Scalable Multi-Agent Offline Reinforcement Learning and the Role of Information
- URL: http://arxiv.org/abs/2502.11260v1
- Date: Sun, 16 Feb 2025 20:28:42 GMT
- Title: Scalable Multi-Agent Offline Reinforcement Learning and the Role of Information
- Authors: Riccardo Zamboni, Enrico Brunetti, Marcello Restelli,
- Abstract summary: We propose a novel scalable routine for both dataset collection and offline learning.
Agents first collect diverse datasets coherently with a pre-specified information-sharing network.
We show how this approach allows to bound the inherent error of the supervised-learning phase of FQI with the mutual information between shared and unshared information.
- Score: 37.18643811339418
- License:
- Abstract: Offline Reinforcement Learning (RL) focuses on learning policies solely from a batch of previously collected data. of- fering the potential to leverage such datasets effectively without the need for costly or risky active exploration. While recent advances in Offline Multi-Agent RL (MARL) have shown promise, most existing methods either rely on large datasets jointly collected by all agents or agent-specific datasets collected independently. The former approach ensures strong performance but raises scalability concerns, while the latter emphasizes scalability at the expense of performance guarantees. In this work, we propose a novel scalable routine for both dataset collection and offline learning. Agents first collect diverse datasets coherently with a pre-specified information-sharing network and subsequently learn coherent localized policies without requiring either full observability or falling back to complete decentralization. We theoretically demonstrate that this structured approach allows a multi-agent extension of the seminal Fitted Q-Iteration (FQI) algorithm to globally converge, in high probability, to near-optimal policies. The convergence is subject to error terms that depend on the informativeness of the shared information. Furthermore, we show how this approach allows to bound the inherent error of the supervised-learning phase of FQI with the mutual information between shared and unshared information. Our algorithm, SCAlable Multi-agent FQI (SCAM-FQI), is then evaluated on a distributed decision-making problem. The empirical results align with our theoretical findings, supporting the effectiveness of SCAM-FQI in achieving a balance between scalability and policy performance.
Related papers
- Enhancing Offline Reinforcement Learning with Curriculum Learning-Based Trajectory Valuation [6.4653739435880455]
Deep reinforcement learning (DRL) relies on the availability and quality of training data, often requiring extensive interactions with specific environments.
In many real-world scenarios, where data collection is costly and risky, offline reinforcement learning (RL) offers a solution by utilizing data collected by domain experts and searching for a batch-constrained optimal policy.
Existing offline RL methods often struggle with challenges posed by non-matching data from external sources.
arXiv Detail & Related papers (2025-02-02T00:03:53Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Distributed Event-Based Learning via ADMM [11.461617927469316]
We consider a global distributed learning problem, where agents minimize an objective function by exchanging information over a network.
Our approach has two distinct settings: (i) It substantially reduces communication by triggering communication only when necessary, and (ii) it is to the data-distribution among the different agents.
arXiv Detail & Related papers (2024-05-17T08:30:28Z) - Pessimistic Causal Reinforcement Learning with Mediators for Confounded Offline Data [17.991833729722288]
We propose a novel policy learning algorithm, PESsimistic CAusal Learning (PESCAL)
Our key observation is that, by incorporating auxiliary variables that mediate the effect of actions on system dynamics, it is sufficient to learn a lower bound of the mediator distribution function, instead of the Q-function.
We provide theoretical guarantees for the algorithms we propose, and demonstrate their efficacy through simulations, as well as real-world experiments utilizing offline datasets from a leading ride-hailing platform.
arXiv Detail & Related papers (2024-03-18T14:51:19Z) - CUDC: A Curiosity-Driven Unsupervised Data Collection Method with
Adaptive Temporal Distances for Offline Reinforcement Learning [62.58375643251612]
We propose a Curiosity-driven Unsupervised Data Collection (CUDC) method to expand feature space using adaptive temporal distances for task-agnostic data collection.
With this adaptive reachability mechanism in place, the feature representation can be diversified, and the agent can navigate itself to collect higher-quality data with curiosity.
Empirically, CUDC surpasses existing unsupervised methods in efficiency and learning performance in various downstream offline RL tasks of the DeepMind control suite.
arXiv Detail & Related papers (2023-12-19T14:26:23Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
offline multi-agent reinforcement learning (MARL) aims to learn effective multi-agent policies from pre-collected datasets.
One agent learned by offline MARL often inherits this random policy, jeopardizing the performance of the entire team.
We propose a novel framework called Shared Individual Trajectories (SIT) to address this problem.
arXiv Detail & Related papers (2022-11-28T18:11:26Z) - Uncertainty-Based Offline Reinforcement Learning with Diversified
Q-Ensemble [16.92791301062903]
We propose an uncertainty-based offline RL method that takes into account the confidence of the Q-value prediction and does not require any estimation or sampling of the data distribution.
Surprisingly, we find that it is possible to substantially outperform existing offline RL methods on various tasks by simply increasing the number of Q-networks along with the clipped Q-learning.
arXiv Detail & Related papers (2021-10-04T16:40:13Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.