ShapeICP: Iterative Category-level Object Pose and Shape Estimation from Depth
- URL: http://arxiv.org/abs/2408.13147v1
- Date: Fri, 23 Aug 2024 15:12:55 GMT
- Title: ShapeICP: Iterative Category-level Object Pose and Shape Estimation from Depth
- Authors: Yihao Zhang, John J. Leonard,
- Abstract summary: Category-level object pose and shape estimation from a single depth image has recently drawn research attention due to its wide applications in robotics and self-driving.
We propose an iterative estimation method that does not require learning from any pose-annotated data.
Our algorithm, named ShapeICP, has its foundation in the iterative closest point (ICP) algorithm but is equipped with additional features for the category-level pose and shape estimation task.
- Score: 15.487722156919988
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Category-level object pose and shape estimation from a single depth image has recently drawn research attention due to its wide applications in robotics and self-driving. The task is particularly challenging because the three unknowns, object pose, object shape, and model-to-measurement correspondences, are compounded together but only a single view of depth measurements is provided. The vast majority of the prior work heavily relies on data-driven approaches to obtain solutions to at least one of the unknowns and typically two, running with the risk of failing to generalize to unseen domains. The shape representations used in the prior work also mainly focus on point cloud and signed distance field (SDF). In stark contrast to the prior work, we approach the problem using an iterative estimation method that does not require learning from any pose-annotated data. In addition, we adopt a novel mesh-based object active shape model that has not been explored by the previous literature. Our algorithm, named ShapeICP, has its foundation in the iterative closest point (ICP) algorithm but is equipped with additional features for the category-level pose and shape estimation task. The results show that even without using any pose-annotated data, ShapeICP surpasses many data-driven approaches that rely on the pose data for training, opening up new solution space for researchers to consider.
Related papers
- Local Occupancy-Enhanced Object Grasping with Multiple Triplanar Projection [24.00828999360765]
This paper addresses the challenge of robotic grasping of general objects.
The proposed model first runs by proposing a number of most likely grasp points in the scene.
Around each grasp point, a module is designed to infer any voxel in its neighborhood to be either void or occupied by some object.
The model further estimates 6-DoF grasp poses utilizing the local occupancy-enhanced object shape information.
arXiv Detail & Related papers (2024-07-22T16:22:28Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
We discuss the recent advances in deep learning-based object pose estimation.
Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks.
arXiv Detail & Related papers (2024-05-13T14:44:22Z) - DVMNet: Computing Relative Pose for Unseen Objects Beyond Hypotheses [59.51874686414509]
Current approaches approximate the continuous pose representation with a large number of discrete pose hypotheses.
We present a Deep Voxel Matching Network (DVMNet) that eliminates the need for pose hypotheses and computes the relative object pose in a single pass.
Our method delivers more accurate relative pose estimates for novel objects at a lower computational cost compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-03-20T15:41:32Z) - GS-Pose: Category-Level Object Pose Estimation via Geometric and
Semantic Correspondence [5.500735640045456]
Category-level pose estimation is a challenging task with many potential applications in computer vision and robotics.
We propose to utilize both geometric and semantic features obtained from a pre-trained foundation model.
This requires significantly less data to train than prior methods since the semantic features are robust to object texture and appearance.
arXiv Detail & Related papers (2023-11-23T02:35:38Z) - Rigidity-Aware Detection for 6D Object Pose Estimation [60.88857851869196]
Most recent 6D object pose estimation methods first use object detection to obtain 2D bounding boxes before actually regressing the pose.
We propose a rigidity-aware detection method exploiting the fact that, in 6D pose estimation, the target objects are rigid.
Key to the success of our approach is a visibility map, which we propose to build using a minimum barrier distance between every pixel in the bounding box and the box boundary.
arXiv Detail & Related papers (2023-03-22T09:02:54Z) - Generative Category-Level Shape and Pose Estimation with Semantic
Primitives [27.692997522812615]
We propose a novel framework for category-level object shape and pose estimation from a single RGB-D image.
To handle the intra-category variation, we adopt a semantic primitive representation that encodes diverse shapes into a unified latent space.
We show that the proposed method achieves SOTA pose estimation performance and better generalization in the real-world dataset.
arXiv Detail & Related papers (2022-10-03T17:51:54Z) - RBP-Pose: Residual Bounding Box Projection for Category-Level Pose
Estimation [103.74918834553247]
Category-level object pose estimation aims to predict the 6D pose as well as the 3D metric size of arbitrary objects from a known set of categories.
Recent methods harness shape prior adaptation to map the observed point cloud into the canonical space and apply Umeyama algorithm to recover the pose and size.
We propose a novel geometry-guided Residual Object Bounding Box Projection network RBP-Pose that jointly predicts object pose and residual vectors.
arXiv Detail & Related papers (2022-07-30T14:45:20Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
We propose a new task that enables and facilitates algorithms to estimate the 6D pose estimation of novel objects during testing.
We collect a dataset with both real and synthetic images and up to 48 unseen objects in the test set.
By training an end-to-end 3D correspondences network, our method finds corresponding points between an unseen object and a partial view RGBD image accurately and efficiently.
arXiv Detail & Related papers (2022-06-23T16:29:53Z) - Category-Agnostic 6D Pose Estimation with Conditional Neural Processes [19.387280883044482]
We present a novel meta-learning approach for 6D pose estimation on unknown objects.
Our algorithm learns object representation in a category-agnostic way, which endows it with strong generalization capabilities across object categories.
arXiv Detail & Related papers (2022-06-14T20:46:09Z) - FS6D: Few-Shot 6D Pose Estimation of Novel Objects [116.34922994123973]
6D object pose estimation networks are limited in their capability to scale to large numbers of object instances.
In this work, we study a new open set problem; the few-shot 6D object poses estimation: estimating the 6D pose of an unknown object by a few support views without extra training.
arXiv Detail & Related papers (2022-03-28T10:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.