論文の概要: Interpretable breast cancer classification using CNNs on mammographic images
- arxiv url: http://arxiv.org/abs/2408.13154v1
- Date: Fri, 23 Aug 2024 15:25:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 14:41:09.626368
- Title: Interpretable breast cancer classification using CNNs on mammographic images
- Title(参考訳): マンモグラフィー画像におけるCNNを用いた乳がん分類の解釈
- Authors: Ann-Kristin Balve, Peter Hendrix,
- Abstract要約: 本研究は,マンモグラム分類のための畳み込みニューラルネットワーク(CNN)の決定過程に関する知見を得る必要性に対処する。
マンモグラフィー画像解析学会(MIAS)データセットをトレーニングしたCNNに対して,LIME,Grad-CAM,Kernel SHAPといったポストホック解釈技術を比較した。
以上の結果から,特にGrad-CAMは,正常,良性,悪性の乳房組織に特徴的なパターンを呈し,CNNの行動に関する包括的知見を提供することが明らかとなった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models have achieved promising results in breast cancer classification, yet their 'black-box' nature raises interpretability concerns. This research addresses the crucial need to gain insights into the decision-making process of convolutional neural networks (CNNs) for mammogram classification, specifically focusing on the underlying reasons for the CNN's predictions of breast cancer. For CNNs trained on the Mammographic Image Analysis Society (MIAS) dataset, we compared the post-hoc interpretability techniques LIME, Grad-CAM, and Kernel SHAP in terms of explanatory depth and computational efficiency. The results of this analysis indicate that Grad-CAM, in particular, provides comprehensive insights into the behavior of the CNN, revealing distinctive patterns in normal, benign, and malignant breast tissue. We discuss the implications of the current findings for the use of machine learning models and interpretation techniques in clinical practice.
- Abstract(参考訳): 深層学習モデルは乳がんの分類において有望な結果を得たが、その「黒い箱」の性質は解釈可能性の懸念を引き起こす。
本研究は、マンモグラム分類のための畳み込みニューラルネットワーク(CNN)の決定過程に関する重要な知見を得る必要性に対処する。
マンモグラフィ画像解析学会(MIAS)データセットを用いたCNNについて,説明的深度と計算効率の観点から,LIME,Grad-CAM,Kernel SHAPといったポストホック解釈可能性技術を比較した。
この分析の結果、特にGrad-CAMは、正常、良性、悪性の乳房組織に特徴的なパターンを呈し、CNNの行動に関する包括的な知見を提供することが示された。
臨床実習における機械学習モデルと解釈技術の利用における現在の知見の意義について考察する。
関連論文リスト
- Improving Sickle Cell Disease Classification: A Fusion of Conventional Classifiers, Segmented Images, and Convolutional Neural Networks [0.31457219084519006]
本稿では, 従来の分類器, セグメント化画像, CNNを併用して, 病原細胞疾患の自動分類を行う手法を提案する。
以上の結果から,SVMを用いたセグメント画像とCNN機能を用いることで96.80%の精度が得られた。
論文 参考訳(メタデータ) (2024-12-23T20:42:15Z) - Robust Melanoma Thickness Prediction via Deep Transfer Learning enhanced by XAI Techniques [39.97900702763419]
本研究は,メラノーマの深さを測定するために皮膚内視鏡像の解析に焦点をあてる。
顆粒層の上部から腫瘍浸潤の最も深い地点まで測定されたブレスロー深さは、黒色腫のステージングと治療決定の指針となる重要なパラメータである。
ISICやプライベートコレクションを含むさまざまなデータセットが使用され、合計で1162枚の画像が含まれている。
その結果, 従来の手法に比べて, モデルが大幅に改善された。
論文 参考訳(メタデータ) (2024-06-19T11:07:55Z) - Feature visualization for convolutional neural network models trained on
neuroimaging data [0.0]
畳み込みニューラルネットワーク(CNN)の機能可視化による最初の結果を示す。
我々は、MRIデータに基づく性分類や人為的病変分類など、さまざまなタスクのためにCNNを訓練した。
得られた画像は、その形状を含む人工的な病変の学習概念を明らかにするが、性分類タスクにおける抽象的な特徴を解釈することは困難である。
論文 参考訳(メタデータ) (2022-03-24T15:24:38Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
本稿では,乳房超音波画像における癌検出のための新しい深層学習手法であるBI-RADS-Netを紹介する。
提案手法は, 臨床診断に関連する特徴表現を学習することにより, 乳腺腫瘍の説明と分類を行うタスクを取り入れたものである。
臨床医が医療現場で診断・報告するために使用する形態学的特徴の観点から予測(良性または悪性)の説明が提供される。
論文 参考訳(メタデータ) (2021-10-05T19:14:46Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Explainable AI and susceptibility to adversarial attacks: a case study
in classification of breast ultrasound images [5.50791468454604]
CNN法は乳房の超音波像を良性または悪性に分類する有望な結果を示している。
しかし、CNN推論はブラックボックスモデルとして機能し、その決定は解釈できない。
本研究では、これらの重要地図を劇的に変更するために、事実上検出不可能な敵攻撃をどのように考案するかを分析する。
論文 参考訳(メタデータ) (2021-08-09T23:52:16Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - DenseNet for Breast Tumor Classification in Mammographic Images [0.0]
本研究の目的は,マンモグラフィ画像における乳腺病変の自動検出,分画,分類のための深層畳み込みニューラルネットワーク手法を構築することである。
ディープラーニングに基づいて,選択と抽出を特徴とするmask-cnn(roialign)法を開発し,drknet architectureを用いて分類を行った。
論文 参考訳(メタデータ) (2021-01-24T03:30:59Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z) - Understanding the robustness of deep neural network classifiers for
breast cancer screening [52.50078591615855]
ディープニューラルネットワーク(DNN)は乳がん検診において有望であるが、その入力摂動に対する堅牢性は臨床的に実装される前によりよく理解する必要がある。
放射線技師レベルのマンモグラム画像分類器の4種類の入力摂動に対する感度を測定した。
また,低域通過フィルタの効果について詳細な解析を行い,臨床的に有意な特徴の視認性を低下させることを示した。
論文 参考訳(メタデータ) (2020-03-23T01:26:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。