Can LLM be a Good Path Planner based on Prompt Engineering? Mitigating the Hallucination for Path Planning
- URL: http://arxiv.org/abs/2408.13184v2
- Date: Tue, 27 Aug 2024 03:27:08 GMT
- Title: Can LLM be a Good Path Planner based on Prompt Engineering? Mitigating the Hallucination for Path Planning
- Authors: Hourui Deng, Hongjie Zhang, Jie Ou, Chaosheng Feng,
- Abstract summary: This study proposes an innovative model, Spatial-to-Relational Transformation and Curriculum Q-Learning (S2RCQL)
We design a path-planning algorithm based on Q-learning to mitigate the context inconsistency hallucination.
Using the Q-value of state-action as auxiliary information for prompts, we correct the hallucinations of LLMs.
- Score: 2.313664320808389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial reasoning in Large Language Models (LLMs) is the foundation for embodied intelligence. However, even in simple maze environments, LLMs still encounter challenges in long-term path-planning, primarily influenced by their spatial hallucination and context inconsistency hallucination by long-term reasoning. To address this challenge, this study proposes an innovative model, Spatial-to-Relational Transformation and Curriculum Q-Learning (S2RCQL). To address the spatial hallucination of LLMs, we propose the Spatial-to-Relational approach, which transforms spatial prompts into entity relations and paths representing entity relation chains. This approach fully taps the potential of LLMs in terms of sequential thinking. As a result, we design a path-planning algorithm based on Q-learning to mitigate the context inconsistency hallucination, which enhances the reasoning ability of LLMs. Using the Q-value of state-action as auxiliary information for prompts, we correct the hallucinations of LLMs, thereby guiding LLMs to learn the optimal path. Finally, we propose a reverse curriculum learning technique based on LLMs to further mitigate the context inconsistency hallucination. LLMs can rapidly accumulate successful experiences by reducing task difficulty and leveraging them to tackle more complex tasks. We performed comprehensive experiments based on Baidu's self-developed LLM: ERNIE-Bot 4.0. The results showed that our S2RCQL achieved a 23%--40% improvement in both success and optimality rates compared with advanced prompt engineering.
Related papers
- LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems [28.72485319617863]
LLMs struggle with some basic tasks that humans find trivial to handle, e.g., counting the number of character r's in the wordstrawberry.
We measure transferability of advanced mathematical and coding reasoning capabilities from specialized LLMs to simple counting tasks.
Compared with strategies such as finetuning and in-context learning, we show that engaging reasoning is the most robust and efficient way to help LLMs better perceive tasks.
arXiv Detail & Related papers (2024-10-18T04:17:16Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Can LLMs Compute with Reasons? [4.995189458714599]
Large language models (LLMs) often struggle with complex mathematical tasks, prone to "hallucinating" incorrect answers.
We propose an "Inductive Learning" approach utilizing a distributed network of Small LangSLMs.
arXiv Detail & Related papers (2024-02-19T12:04:25Z) - LLMs Can't Plan, But Can Help Planning in LLM-Modulo Frameworks [18.068035947969044]
There is considerable confusion about the role of Large Language Models (LLMs) in planning and reasoning tasks.
We argue that auto-regressive LLMs cannot, by themselves, do planning or self-verification.
We present a vision of bf LLM-Modulo Frameworks that combine the strengths of LLMs with external model-based verifiers.
arXiv Detail & Related papers (2024-02-02T14:43:18Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - Investigating Answerability of LLMs for Long-Form Question Answering [35.41413072729483]
We focus on long-form question answering (LFQA) because it has several practical and impactful applications.
We propose a question-generation method from abstractive summaries and show that generating follow-up questions from summaries of long documents can create a challenging setting.
arXiv Detail & Related papers (2023-09-15T07:22:56Z) - DoLa: Decoding by Contrasting Layers Improves Factuality in Large
Language Models [79.01926242857613]
Large language models (LLMs) are prone to hallucinations, generating content that deviates from facts seen during pretraining.
We propose a simple decoding strategy for reducing hallucinations with pretrained LLMs.
We find that this Decoding by Contrasting Layers (DoLa) approach is able to better surface factual knowledge and reduce the generation of incorrect facts.
arXiv Detail & Related papers (2023-09-07T17:45:31Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
This paper proposes a novel framework named textbfSearch-in-the-Chain (SearChain) for the interaction between Information Retrieval (IR) and Large Language Model (LLM)
Experiments show that SearChain outperforms state-of-the-art baselines on complex knowledge-intensive tasks.
arXiv Detail & Related papers (2023-04-28T10:15:25Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.