Enhancing Few-Shot Transfer Learning with Optimized Multi-Task Prompt Tuning through Modular Prompt Composition
- URL: http://arxiv.org/abs/2408.13227v1
- Date: Fri, 23 Aug 2024 17:01:51 GMT
- Title: Enhancing Few-Shot Transfer Learning with Optimized Multi-Task Prompt Tuning through Modular Prompt Composition
- Authors: Ahmad Pouramini, Hesham Faili,
- Abstract summary: Multi-task prompt tuning has garnered considerable attention for its inherent modularity and potential to enhance parameter-efficient transfer learning.
This paper aims to analyze and improve the performance of multiple tasks by facilitating the transfer of knowledge between their corresponding prompts in a multi-task setting.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, multi-task prompt tuning has garnered considerable attention for its inherent modularity and potential to enhance parameter-efficient transfer learning across diverse tasks. This paper aims to analyze and improve the performance of multiple tasks by facilitating the transfer of knowledge between their corresponding prompts in a multi-task setting. Our proposed approach decomposes the prompt for each target task into a combination of shared prompts (source prompts) and a task-specific prompt (private prompt). During training, the source prompts undergo fine-tuning and are integrated with the private prompt to drive the target prompt for each task. We present and compare multiple methods for combining source prompts to construct the target prompt, analyzing the roles of both source and private prompts within each method. We investigate their contributions to task performance and offer flexible, adjustable configurations based on these insights to optimize performance. Our empirical findings clearly showcase improvements in accuracy and robustness compared to the conventional practice of prompt tuning and related works. Notably, our results substantially outperform other methods in the field in few-shot settings, demonstrating superior performance in various tasks across GLUE benchmark, among other tasks. This achievement is attained with a significantly reduced amount of training data, making our method a promising one for few-shot settings.
Related papers
- QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - Instruction Matters: A Simple yet Effective Task Selection for Optimized Instruction Tuning of Specific Tasks [51.15473776489712]
We introduce a simple yet effective task selection method that leverages instruction information alone to identify relevant tasks.
Our method is significantly more efficient than traditional approaches, which require complex measurements of pairwise transferability between tasks or the creation of data samples for the target task.
Experimental results demonstrate that training on a small set of tasks, chosen solely on the instructions, results in substantial improvements in performance on benchmarks such as P3, Big-Bench, NIV2, and Big-Bench Hard.
arXiv Detail & Related papers (2024-04-25T08:49:47Z) - PEMT: Multi-Task Correlation Guided Mixture-of-Experts Enables Parameter-Efficient Transfer Learning [28.353530290015794]
We propose PEMT, a novel parameter-efficient fine-tuning framework based on multi-task transfer learning.
We conduct experiments on a broad range of tasks over 17 datasets.
arXiv Detail & Related papers (2024-02-23T03:59:18Z) - Bayesian Multi-Task Transfer Learning for Soft Prompt Tuning [44.43258626098661]
We argue that when we extract knowledge from source tasks via training source prompts, we need to consider this correlation among source tasks for better transfer to target tasks.
We propose a Bayesian approach where we work with the posterior distribution of prompts across source tasks.
We show extensive experimental results on the standard benchmark NLP tasks, where our Bayesian multi-task transfer learning approach outperforms the state-of-the-art methods in many settings.
arXiv Detail & Related papers (2024-02-13T16:57:02Z) - Active Instruction Tuning: Improving Cross-Task Generalization by
Training on Prompt Sensitive Tasks [101.40633115037983]
Instruction tuning (IT) achieves impressive zero-shot generalization results by training large language models (LLMs) on a massive amount of diverse tasks with instructions.
How to select new tasks to improve the performance and generalizability of IT models remains an open question.
We propose active instruction tuning based on prompt uncertainty, a novel framework to identify informative tasks, and then actively tune the models on the selected tasks.
arXiv Detail & Related papers (2023-11-01T04:40:05Z) - Dynamic Prompting: A Unified Framework for Prompt Tuning [33.175097465669374]
We present a unified dynamic prompt (DP) tuning strategy that dynamically determines different factors of prompts based on specific tasks and instances.
Experimental results underscore the significant performance improvement achieved by dynamic prompt tuning across a wide range of tasks.
We establish the universal applicability of our approach under full-data, few-shot, and multitask scenarios.
arXiv Detail & Related papers (2023-03-06T06:04:46Z) - Multitask Prompt Tuning Enables Parameter-Efficient Transfer Learning [43.639430661322585]
We propose multitask prompt tuning (MPT)
MPT learns a single transferable prompt by distilling knowledge from multiple task-specific source prompts.
We then learn multiplicative low rank updates to this shared prompt to efficiently adapt it to each downstream target task.
arXiv Detail & Related papers (2023-03-06T03:25:59Z) - Multitask Vision-Language Prompt Tuning [103.5967011236282]
We propose multitask vision-language prompt tuning (MV)
MV incorporates cross-task knowledge into prompt tuning for vision-language models.
Results in 20 vision tasks demonstrate that the proposed approach outperforms all single-task baseline prompt tuning methods.
arXiv Detail & Related papers (2022-11-21T18:41:44Z) - Attentional Mixtures of Soft Prompt Tuning for Parameter-efficient
Multi-task Knowledge Sharing [53.399742232323895]
ATTEMPT is a new modular, multi-task, and parameter-efficient language model (LM) tuning approach.
It combines knowledge transferred across different tasks via a mixture of soft prompts while keeping original LM unchanged.
It is parameter-efficient (e.g., updates 1,600 times fewer parameters than fine-tuning) and enables multi-task learning and flexible extensions.
arXiv Detail & Related papers (2022-05-24T10:48:33Z) - Uni-Perceiver: Pre-training Unified Architecture for Generic Perception
for Zero-shot and Few-shot Tasks [73.63892022944198]
We present a generic perception architecture named Uni-Perceiver.
It processes a variety of modalities and tasks with unified modeling and shared parameters.
Results show that our pre-trained model without any tuning can achieve reasonable performance even on novel tasks.
arXiv Detail & Related papers (2021-12-02T18:59:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.