論文の概要: Re-evaluation of Face Anti-spoofing Algorithm in Post COVID-19 Era Using Mask Based Occlusion Attack
- arxiv url: http://arxiv.org/abs/2408.13251v1
- Date: Fri, 23 Aug 2024 17:48:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 14:11:01.018748
- Title: Re-evaluation of Face Anti-spoofing Algorithm in Post COVID-19 Era Using Mask Based Occlusion Attack
- Title(参考訳): マスクによるオクルージョン・アタックを用いたCOVID-19後における顔のアンチ・スプーフィングアルゴリズムの再評価
- Authors: Vaibhav Sundharam, Abhijit Sarkar, A. Lynn Abbott,
- Abstract要約: 顔の偽造防止アルゴリズムは、プレゼンテーション攻撃に対する顔認識システムの堅牢な展開において重要な役割を果たす。
我々は5種類のマスクを用いて、顔の下部を様々なカバー領域で覆っている。
また、顔の上部を覆う様々な種類の眼鏡も使用しています。
- 参考スコア(独自算出の注目度): 4.550965216676562
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Face anti-spoofing algorithms play a pivotal role in the robust deployment of face recognition systems against presentation attacks. Conventionally, full facial images are required by such systems to correctly authenticate individuals, but the widespread requirement of masks due to the current COVID-19 pandemic has introduced new challenges for these biometric authentication systems. Hence, in this work, we investigate the performance of presentation attack detection (PAD) algorithms under synthetic facial occlusions using masks and glasses. We have used five variants of masks to cover the lower part of the face with varying coverage areas (low-coverage, medium-coverage, high-coverage, round coverage), and 3D cues. We have also used different variants of glasses that cover the upper part of the face. We systematically tested the performance of four PAD algorithms under these occlusion attacks using a benchmark dataset. We have specifically looked at four different baseline PAD algorithms that focus on, texture, image quality, frame difference/motion, and abstract features through a convolutional neural network (CNN). Additionally we have introduced a new hybrid model that uses CNN and local binary pattern textures. Our experiment shows that adding the occlusions significantly degrades the performance of all of the PAD algorithms. Our results show the vulnerability of face anti-spoofing algorithms with occlusions, which could be in the usage of such algorithms in the post-pandemic era.
- Abstract(参考訳): 顔の偽造防止アルゴリズムは、プレゼンテーション攻撃に対する顔認識システムの堅牢な展開において重要な役割を果たす。
従来、こうしたシステムでは、個人を正しく認証するために完全な顔画像が必要であるが、現在のCOVID-19パンデミックによるマスクの広範な要求は、これらの生体認証システムに新たな課題をもたらしている。
そこで,本稿では,マスクとメガネを用いた合成顔隠蔽下での提示攻撃検出(PAD)アルゴリズムの性能について検討する。
我々は5種類のマスクを用いて顔の下部をカバーし(低被覆、中被覆、高被覆、ラウンドカバー)、3Dキューを開発した。
また、顔の上部を覆う様々な種類の眼鏡も使用しています。
ベンチマークデータセットを用いて,これらの閉塞攻撃下での4つのPADアルゴリズムの性能を系統的に検証した。
我々は、畳み込みニューラルネットワーク(CNN)を通じて、テクスチャ、画質、フレーム差/動き、抽象的特徴に焦点を当てた4つの異なるベースラインPADアルゴリズムを特に検討した。
さらに、CNNとローカルバイナリパターンテクスチャを利用する新しいハイブリッドモデルも導入しました。
実験の結果,オクルージョンの追加はPADアルゴリズムの性能を著しく低下させることがわかった。
以上の結果から, フェース・アンチ・スプーフィング・アルゴリズムとオクルージョン・アルゴリズムの脆弱性が示唆された。
関連論文リスト
- Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
本稿では, 対向性, 可視性に優れた対向性例を生成できるASMA(Adversarial Semantic Mask Attack framework)を提案する。
具体的には, 局所的なセマンティック領域の摂動を抑制し, 良好なステルス性を実現する, 対向型セマンティックマスク生成モデルを提案する。
論文 参考訳(メタデータ) (2024-06-16T10:38:11Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
顔の偽造生成技術は鮮明な顔を生み出し、セキュリティとプライバシーに対する世間の懸念を高めている。
顔偽造検出は偽の顔の識別に成功しているが、最近の研究では顔偽造検出は敵の例に対して非常に脆弱であることが示されている。
論文 参考訳(メタデータ) (2023-10-18T14:49:54Z) - Dual Spoof Disentanglement Generation for Face Anti-spoofing with Depth
Uncertainty Learning [54.15303628138665]
フェース・アンチ・スプーフィング(FAS)は、顔認識システムが提示攻撃を防ぐ上で重要な役割を担っている。
既存のフェース・アンチ・スプーフィング・データセットは、アイデンティティと重要なばらつきが不十分なため、多様性を欠いている。
我々は「生成によるアンチ・スプーフィング」によりこの問題に対処するデュアル・スポット・ディアンタングメント・ジェネレーション・フレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-01T15:36:59Z) - Geometrically Adaptive Dictionary Attack on Face Recognition [23.712389625037442]
顔認証に対するクエリ効率の良いブラックボックス攻撃のための戦略を提案する。
中心となるアイデアは、UVテクスチャマップに逆方向の摂動を作り、それを画像の顔に投影することです。
LFWデータセットとCPLFWデータセットの実験において、圧倒的な性能改善を示す。
論文 参考訳(メタデータ) (2021-11-08T10:26:28Z) - Efficient Masked Face Recognition Method during the COVID-19 Pandemic [4.13365552362244]
新型コロナウイルス(COVID-19)は異例の危機であり、多くの死傷者やセキュリティ上の問題に繋がる。
新型コロナウイルスの感染拡大を抑えるため、マスクを着用して身を守ることが多い。
これにより、顔の一部が隠されているため、顔認識は非常に難しいタスクとなる。
論文 参考訳(メタデータ) (2021-05-07T01:32:37Z) - MixNet for Generalized Face Presentation Attack Detection [63.35297510471997]
我々は、プレゼンテーションアタックを検出するための、TextitMixNetと呼ばれるディープラーニングベースのネットワークを提案している。
提案アルゴリズムは最先端の畳み込みニューラルネットワークアーキテクチャを利用して,各攻撃カテゴリの特徴マッピングを学習する。
論文 参考訳(メタデータ) (2020-10-25T23:01:13Z) - Black-Box Face Recovery from Identity Features [61.950765357647605]
我々はアルゴリズムをテストするために最先端の顔認識システム(ArcFace)を攻撃した。
我々のアルゴリズムは、最先端のソリューションに比べて、はるかに少ないクエリを必要とする。
論文 参考訳(メタデータ) (2020-07-27T15:25:38Z) - Face Anti-Spoofing by Learning Polarization Cues in a Real-World
Scenario [50.36920272392624]
顔の偽造は生体認証アプリケーションにおけるセキュリティ侵害を防ぐ鍵となる。
RGBと赤外線画像を用いたディープラーニング手法は,新たな攻撃に対する大量のトレーニングデータを必要とする。
本研究では,実顔の偏光画像の物理的特徴を自動的に学習することにより,現実のシナリオにおける顔のアンチ・スプーフィング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T03:04:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。