Revisiting Adversarial Perception Attacks and Defense Methods on Autonomous Driving Systems
- URL: http://arxiv.org/abs/2505.11532v2
- Date: Fri, 23 May 2025 17:44:21 GMT
- Title: Revisiting Adversarial Perception Attacks and Defense Methods on Autonomous Driving Systems
- Authors: Cheng Chen, Yuhong Wang, Nafis S Munir, Xiangwei Zhou, Xugui Zhou,
- Abstract summary: We revisit adversarial attacks and defense methods, focusing on road sign recognition and lead object detection and prediction.<n>Our experiments highlight both the strengths and limitations of these methods in mitigating complex attacks.<n>We aim to provide deeper insights into the vulnerabilities of ADS perception systems and contribute guidance for developing more resilient defense strategies.
- Score: 7.314962540663628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving systems (ADS) increasingly rely on deep learning-based perception models, which remain vulnerable to adversarial attacks. In this paper, we revisit adversarial attacks and defense methods, focusing on road sign recognition and lead object detection and prediction (e.g., relative distance). Using a Level-2 production ADS, OpenPilot by Comma$.$ai, and the widely adopted YOLO model, we systematically examine the impact of adversarial perturbations and assess defense techniques, including adversarial training, image processing, contrastive learning, and diffusion models. Our experiments highlight both the strengths and limitations of these methods in mitigating complex attacks. Through targeted evaluations of model robustness, we aim to provide deeper insights into the vulnerabilities of ADS perception systems and contribute guidance for developing more resilient defense strategies.
Related papers
- A Survey of Adversarial Defenses in Vision-based Systems: Categorization, Methods and Challenges [4.716918459551686]
Adversarial attacks have emerged as a major challenge to the trustworthy deployment of machine learning models.<n>We present a comprehensive systematization of knowledge on adversarial defenses, focusing on two key computer vision tasks.<n>We map these defenses to the types of adversarial attacks and datasets where they are most effective.
arXiv Detail & Related papers (2025-03-01T07:17:18Z) - Robust Image Classification: Defensive Strategies against FGSM and PGD Adversarial Attacks [0.0]
Adversarial attacks pose significant threats to the robustness of deep learning models in image classification.
This paper explores and refines defense mechanisms against these attacks to enhance the resilience of neural networks.
arXiv Detail & Related papers (2024-08-20T02:00:02Z) - CANEDERLI: On The Impact of Adversarial Training and Transferability on CAN Intrusion Detection Systems [17.351539765989433]
A growing integration of vehicles with external networks has led to a surge in attacks targeting their Controller Area Network (CAN) internal bus.
As a countermeasure, various Intrusion Detection Systems (IDSs) have been suggested in the literature to prevent and mitigate these threats.
Most of these systems rely on data-driven approaches such as Machine Learning (ML) and Deep Learning (DL) models.
In this paper, we present CANEDERLI, a novel framework for securing CAN-based IDSs.
arXiv Detail & Related papers (2024-04-06T14:54:11Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
Adrial attacks and defenses in machine learning and deep neural network have been gaining significant attention.
This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques.
New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks.
arXiv Detail & Related papers (2023-03-11T04:19:31Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Deep Learning-Based Autonomous Driving Systems: A Survey of Attacks and
Defenses [13.161104978510943]
This survey provides a thorough analysis of different attacks that may jeopardize autonomous driving systems.
It covers adversarial attacks for various deep learning models and attacks in both physical and cyber context.
Some promising research directions are suggested in order to improve deep learning-based autonomous driving safety.
arXiv Detail & Related papers (2021-04-05T06:31:47Z) - End-to-end Uncertainty-based Mitigation of Adversarial Attacks to
Automated Lane Centering [12.11406399284803]
We propose an end-to-end approach that addresses the impact of adversarial attacks throughout perception, planning, and control modules.
Our approach can effectively mitigate the impact of adversarial attacks and can achieve 55% to 90% improvement over the original OpenPilot.
arXiv Detail & Related papers (2021-02-27T22:36:32Z) - Adversarial defense for automatic speaker verification by cascaded
self-supervised learning models [101.42920161993455]
More and more malicious attackers attempt to launch adversarial attacks at automatic speaker verification (ASV) systems.
We propose a standard and attack-agnostic method based on cascaded self-supervised learning models to purify the adversarial perturbations.
Experimental results demonstrate that the proposed method achieves effective defense performance and can successfully counter adversarial attacks.
arXiv Detail & Related papers (2021-02-14T01:56:43Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
We introduce timing-based adversarial strategies against a DRL-based navigation system by jamming in physical noise patterns on the selected time frames.
Our experimental results show that the adversarial timing attacks can lead to a significant performance drop.
arXiv Detail & Related papers (2020-02-20T21:39:25Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.