論文の概要: QAdaPrune: Adaptive Parameter Pruning For Training Variational Quantum Circuits
- arxiv url: http://arxiv.org/abs/2408.13352v1
- Date: Fri, 23 Aug 2024 19:57:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 19:59:01.957312
- Title: QAdaPrune: Adaptive Parameter Pruning For Training Variational Quantum Circuits
- Title(参考訳): QAdaPrune: 変分量子回路のトレーニングのための適応パラメータプルーニング
- Authors: Ankit Kulshrestha, Xiaoyuan Liu, Hayato Ushijima-Mwesigwa, Bao Bach, Ilya Safro,
- Abstract要約: emphQAdaPruneは適応パラメータのプルーニングアルゴリズムで、しきい値を自動的に決定し、冗長パラメータと非パフォーマンスパラメータをインテリジェントにプルーする。
得られたスパースパラメータ集合は、未計算の量子回路と同等に動作する量子回路を生成する。
- 参考スコア(独自算出の注目度): 2.3332157823623403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the present noisy intermediate scale quantum computing era, there is a critical need to devise methods for the efficient implementation of gate-based variational quantum circuits. This ensures that a range of proposed applications can be deployed on real quantum hardware. The efficiency of quantum circuit is desired both in the number of trainable gates and the depth of the overall circuit. The major concern of barren plateaus has made this need for efficiency even more acute. The problem of efficient quantum circuit realization has been extensively studied in the literature to reduce gate complexity and circuit depth. Another important approach is to design a method to reduce the \emph{parameter complexity} in a variational quantum circuit. Existing methods include hyperparameter-based parameter pruning which introduces an additional challenge of finding the best hyperparameters for different applications. In this paper, we present \emph{QAdaPrune} - an adaptive parameter pruning algorithm that automatically determines the threshold and then intelligently prunes the redundant and non-performing parameters. We show that the resulting sparse parameter sets yield quantum circuits that perform comparably to the unpruned quantum circuits and in some cases may enhance trainability of the circuits even if the original quantum circuit gets stuck in a barren plateau.\\ \noindent{\bf Reproducibility}: The source code and data are available at \url{https://github.com/aicaffeinelife/QAdaPrune.git}
- Abstract(参考訳): 現在のノイズの多い中間スケール量子コンピューティングの時代では、ゲートベースの変分量子回路の効率的な実装法を考案する必要がある。
これにより、提案されたさまざまなアプリケーションが、実際の量子ハードウェアにデプロイできることが保証される。
量子回路の効率性は、トレーニング可能なゲートの数と全体回路の深さの両方で要求される。
バレン高原の主な懸念は、この効率性の必要性をさらに深刻にしたことである。
効率的な量子回路実現の問題は、ゲートの複雑さと回路深さを低減するために文献で広く研究されている。
もう一つの重要なアプローチは、変分量子回路における \emph{parameter complexity} を減少させる手法を設計することである。
既存の手法にはハイパーパラメータベースのパラメータプルーニングがあり、これは異なるアプリケーションに最適なハイパーパラメータを見つけるという新たな課題をもたらす。
本稿では,適応パラメータのプルーニングアルゴリズムである \emph{QAdaPrune} について述べる。
得られたスパースパラメータ集合は、未切断の量子回路と同等に動作する量子回路を生成し、場合によっては、元の量子回路がバレンプラトーに固定されたとしても、回路のトレーニング性を高める可能性があることを示す。
\\ \noindent{\bf Reproducibility}: ソースコードとデータは \url{https://github.com/aicaffeinelife/QAdaPrune.git} で公開されている。
関連論文リスト
- Symmetry-preserved cost functions for variational quantum eigensolver [0.0]
ハイブリッド量子-古典的変分アルゴリズムは、ノイズの多い量子コンピュータに最適であると考えられている。
コスト関数に直接対称性の保存を符号化し、ハードウェア効率の良いAns"atzeをより効率的に利用できるようにする。
論文 参考訳(メタデータ) (2024-11-25T20:33:47Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - FragQC: An Efficient Quantum Error Reduction Technique using Quantum
Circuit Fragmentation [4.2754140179767415]
誤差確率が一定の閾値を超えると、量子回路をサブ回路に切断するソフトウェアツールであるFragQCを提示する。
回路を切断せずに直接実行した場合の忠実度は14.83%増加し、8.45%が最先端のICP法である。
論文 参考訳(メタデータ) (2023-09-30T17:38:31Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
変動量子回路のコスト関数とその分散を効率よく計算する方法を見出した。
この方法は、変分量子回路のトレーニング容易性を証明し、バレンプラトー問題を克服できる設計戦略を探索するために用いられる。
論文 参考訳(メタデータ) (2023-02-09T14:05:18Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Gaussian initializations help deep variational quantum circuits escape
from the barren plateau [87.04438831673063]
近年、変分量子回路は量子シミュレーションや量子機械学習に広く用いられている。
しかし、ランダムな構造を持つ量子回路は、回路深さと量子ビット数に関して指数関数的に消える勾配のため、トレーニング容易性が低い。
この結果、ディープ量子回路は実用的なタスクでは実現できないという一般的な信念が導かれる。
論文 参考訳(メタデータ) (2022-03-17T15:06:40Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
量子回路をキューネットワークとしてモデル化することを提案する。
提案手法はスケーラビリティが高く,大規模量子回路のコンパイルに必要となる潜在的な速度と精度を有する。
論文 参考訳(メタデータ) (2021-06-26T10:55:52Z) - Automatically Differentiable Quantum Circuit for Many-qubit State
Preparation [1.5662820454886202]
任意の量子数量子ビット状態を効率的に準備するための自動微分可能な量子回路(ADQC)アプローチを提案する。
この回路は、進化した状態と目標状態との間の距離を最小化するためにバック伝搬を用いて潜在ゲートを更新することで最適化される。
我々の研究は、機械学習手法と組み合わせることで、多量子ビットシステムにおける量子回路の「インテリジェントな構成」に光を当てている。
論文 参考訳(メタデータ) (2021-04-30T12:22:26Z) - Capacity and quantum geometry of parametrized quantum circuits [0.0]
パラメタライズド量子回路は、現在のデバイスで効果的に実装できる。
パラメータ空間の幾何学的構造を用いて,これらの回路のキャパシティとトレーニング性を評価する。
本結果は,変分量子アルゴリズムの改良を目的としたパラメタライズド量子回路の理解を深めるものである。
論文 参考訳(メタデータ) (2021-02-02T18:16:57Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUINTIFYは、量子回路の定量的解析のためのオープンソースのフレームワークである。
Google Cirqをベースにしており、Clifford+T回路を念頭に開発されている。
ベンチマークのため、QUINTIFYは量子メモリと量子演算回路を含む。
論文 参考訳(メタデータ) (2020-07-21T15:36:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。