論文の概要: Disentangled Training with Adversarial Examples For Robust Small-footprint Keyword Spotting
- arxiv url: http://arxiv.org/abs/2408.13355v1
- Date: Fri, 23 Aug 2024 20:03:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 19:59:01.953961
- Title: Disentangled Training with Adversarial Examples For Robust Small-footprint Keyword Spotting
- Title(参考訳): ロバストなスモールフットプリントキーワードスポッティングのための逆例による遠絡訓練
- Authors: Zhenyu Wang, Li Wan, Biqiao Zhang, Yiteng Huang, Shang-Wen Li, Ming Sun, Xin Lei, Zhaojun Yang,
- Abstract要約: KWSのロバスト性を改善するために,逆例を用いたデータソース対応不整合学習を提案する。
実験結果から,提案手法は偽拒絶率を40.31%,偽受け入れ率1%で改善することが示された。
我々の最高のパフォーマンスシステムは、Google Speech Commands V1データセットで9,8.06%の精度を達成する。
- 参考スコア(独自算出の注目度): 18.456711824241978
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A keyword spotting (KWS) engine that is continuously running on device is exposed to various speech signals that are usually unseen before. It is a challenging problem to build a small-footprint and high-performing KWS model with robustness under different acoustic environments. In this paper, we explore how to effectively apply adversarial examples to improve KWS robustness. We propose datasource-aware disentangled learning with adversarial examples to reduce the mismatch between the original and adversarial data as well as the mismatch across original training datasources. The KWS model architecture is based on depth-wise separable convolution and a simple attention module. Experimental results demonstrate that the proposed learning strategy improves false reject rate by $40.31%$ at $1%$ false accept rate on the internal dataset, compared to the strongest baseline without using adversarial examples. Our best-performing system achieves $98.06%$ accuracy on the Google Speech Commands V1 dataset.
- Abstract(参考訳): デバイス上で連続的に動作しているキーワードスポッティング(KWS)エンジンは、通常目に見えない様々な音声信号に曝される。
異なる音響環境下で頑健性を有する小型かつ高性能なKWSモデルを構築することは難しい問題である。
本稿では,KWSのロバスト性を改善するために,敵の例を効果的に適用する方法を検討する。
本稿では,元データと逆データとのミスマッチを低減し,元データと逆データとのミスマッチを低減するために,逆データを用いたデータソース対応非絡合学習を提案する。
KWSモデルアーキテクチャは、深度的に分離可能な畳み込みと単純な注意モジュールに基づいている。
実験結果から,提案した学習戦略は,最強のベースラインを敵の例を使わずに,内部データセットに対する偽受け入れ率を40.31%=$1%で改善することを示した。
我々の最高のパフォーマンスシステムは、Google Speech Commands V1データセットで9,8.06%の精度を達成する。
関連論文リスト
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
ディープニューラルネットワーク(DNN)は、わずかに敵対的な摂動に対して脆弱である。
トレーニング中の強力な特徴表現学習は、元のモデルの堅牢性を大幅に向上させることができることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
論文 参考訳(メタデータ) (2024-10-02T16:05:03Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - Advancing Adversarial Robustness Through Adversarial Logit Update [10.041289551532804]
敵の訓練と敵の浄化は最も広く認知されている防衛戦略の一つである。
そこで本稿では,新たな原則であるALU(Adversarial Logit Update)を提案する。
本手法は,幅広い敵攻撃に対する最先端手法と比較して,優れた性能を実現する。
論文 参考訳(メタデータ) (2023-08-29T07:13:31Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
本稿では,2重のインスタンス再重み付き対向フレームワークを提案する。
KL偏差正規化損失関数の最適化により重みを求める。
提案手法は, 平均ロバスト性能において, 最先端のベースライン法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-01T06:16:18Z) - Improving the Robustness of Summarization Systems with Dual Augmentation [68.53139002203118]
頑健な要約システムは、入力中の特定の単語の選択やノイズに関わらず、文書のギストをキャプチャできるべきである。
まず,単語レベルの同義語置換や雑音を含む摂動に対する要約モデルの頑健性について検討する。
SummAttackerを提案する。これは言語モデルに基づく対数サンプルを生成するための効率的な手法である。
論文 参考訳(メタデータ) (2023-06-01T19:04:17Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Robust Few-shot Learning Without Using any Adversarial Samples [19.34427461937382]
高度なメタラーニング技術を用いて、数発の問題をロバストネスの目的と組み合わせる試みがいくつかなされている。
逆のサンプルを一切必要としない単純で効果的な代替案を提案する。
ヒトの認知的意思決定プロセスにインスパイアされ、ベースクラスデータとそれに対応する低周波サンプルの高レベル特徴マッチングを強制する。
論文 参考訳(メタデータ) (2022-11-03T05:58:26Z) - Two Heads are Better than One: Robust Learning Meets Multi-branch Models [14.72099568017039]
本稿では,従来の対人訓練用データセットのみを用いて,最先端のパフォーマンスを得るために,分岐直交補助訓練(BORT)を提案する。
我々は, CIFAR-10, CIFAR-100, SVHN に対する Epsilon = 8/255 の ell_infty ノルム束縛摂動に対するアプローチを評価した。
論文 参考訳(メタデータ) (2022-08-17T05:42:59Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Learning to Learn from Mistakes: Robust Optimization for Adversarial
Noise [1.976652238476722]
我々はメタ最適化器を訓練し、敵対的な例を使ってモデルを堅牢に最適化することを学び、学習した知識を新しいモデルに転送することができる。
実験の結果、メタ最適化は異なるアーキテクチャやデータセット間で一貫性があることが示され、敵の脆弱性を自動的にパッチすることができることが示唆された。
論文 参考訳(メタデータ) (2020-08-12T11:44:01Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。