論文の概要: NeurCAM: Interpretable Neural Clustering via Additive Models
- arxiv url: http://arxiv.org/abs/2408.13361v1
- Date: Fri, 23 Aug 2024 20:32:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 19:49:09.653139
- Title: NeurCAM: Interpretable Neural Clustering via Additive Models
- Title(参考訳): NeurCAM: 付加モデルによる解釈可能なニューラルクラスタリング
- Authors: Nakul Upadhya, Eldan Cohen,
- Abstract要約: 解釈可能なクラスタリングアルゴリズムは、取得したグループを説明しながら、類似したデータポイントをグループ化する。
本稿では、解釈可能なクラスタリング問題に対する新しいアプローチであるNeurCAM(Neur Clustering Additive Model)を紹介する。
本手法は,テキストデータのクラスタリングにおいて,他の解釈可能なクラスタリング手法よりも優れている。
- 参考スコア(独自算出の注目度): 3.4437947384641037
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretable clustering algorithms aim to group similar data points while explaining the obtained groups to support knowledge discovery and pattern recognition tasks. While most approaches to interpretable clustering construct clusters using decision trees, the interpretability of trees often deteriorates on complex problems where large trees are required. In this work, we introduce the Neural Clustering Additive Model (NeurCAM), a novel approach to the interpretable clustering problem that leverages neural generalized additive models to provide fuzzy cluster membership with additive explanations of the obtained clusters. To promote sparsity in our model's explanations, we introduce selection gates that explicitly limit the number of features and pairwise interactions leveraged. Additionally, we demonstrate the capacity of our model to perform text clustering that considers the contextual representation of the texts while providing explanations for the obtained clusters based on uni- or bi-word terms. Extensive experiments show that NeurCAM achieves performance comparable to black-box methods on tabular datasets while remaining interpretable. Additionally, our approach significantly outperforms other interpretable clustering approaches when clustering on text data.
- Abstract(参考訳): 解釈可能なクラスタリングアルゴリズムは、知識発見とパターン認識タスクをサポートするために得られたグループを説明しながら、類似したデータポイントをグループ化する。
決定木を用いたクラスタリングを解釈するほとんどの手法はクラスタを構成するが、大きな木を必要とする複雑な問題に対して、木の解釈可能性はしばしば悪化する。
本研究では,ニューラルクラスタリング付加モデル(NeurCAM)を提案する。ニューラルクラスタリング付加モデル(NeurCAM)は,ニューラル一般化付加モデルを利用して,得られたクラスタの付加的説明を伴うファジィクラスタメンバシップを提供する,解釈可能なクラスタリング問題に対する新しいアプローチである。
モデルの説明における空間性を促進するために,特徴の数を明示的に制限する選択ゲートを導入する。
さらに,テキストの文脈的表現を考慮したテキストクラスタリングを行う上で,ユニワードやバイワードの用語に基づいて得られたクラスタについての説明を行う能力を示す。
大規模な実験により、NeurCAMは解釈可能なままのグラフデータセット上でのブラックボックスメソッドに匹敵するパフォーマンスを実現している。
さらに本手法は,テキストデータのクラスタリングにおいて,他の解釈可能なクラスタリング手法よりも優れている。
関連論文リスト
- Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Using Decision Trees for Interpretable Supervised Clustering [0.0]
教師付きクラスタリングは、高い確率密度でラベル付きデータのクラスタを形成することを目的としている。
特に、特定のクラスのデータのクラスタを見つけ、包括的なルールのセットでクラスタを記述することに興味があります。
論文 参考訳(メタデータ) (2023-07-16T17:12:45Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - Enhancing cluster analysis via topological manifold learning [0.3823356975862006]
クラスタ化前にデータセットのトポロジ構造を推定することで,クラスタ検出を大幅に向上させることができることを示す。
位相構造を推定するための多様体学習法UMAPと密度に基づくクラスタリング法DBSCANを組み合わせた。
論文 参考訳(メタデータ) (2022-07-01T15:53:39Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
我々は,自己教師型コントラストグラフクラスタリング(SCAGC)という,新たな属性グラフクラスタリングネットワークを提案する。
SCAGCでは,不正確なクラスタリングラベルを活用することで,ノード表現学習のための自己教師付きコントラスト損失を設計する。
OOSノードでは、SCAGCはクラスタリングラベルを直接計算できる。
論文 参考訳(メタデータ) (2021-10-15T03:25:28Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
表現学習とクラスタリングを1つのパイプラインに初めて統合するフレームワークを提案する。
提案フレームワークは,近年開発された生成モデルを用いて,本質的な特徴を学習する能力を活用している。
実験の結果,提案手法の性能は,最先端の手法よりも優れているか,少なくとも同等であることがわかった。
論文 参考訳(メタデータ) (2021-06-11T04:08:54Z) - Deep Descriptive Clustering [24.237000220172906]
本稿では,解釈可能なタグを用いた説明を同時に生成しながら,複雑なデータに対してクラスタリングを行うための新しい設定について検討する。
我々は,入力に対する経験的分布と,クラスタリング目的に対して誘導されたクラスタリングラベルの相互情報を最大化することにより,優れたクラスタを形成する。
公開データによる実験結果から,クラスタリング性能の競争ベースラインよりも優れた結果が得られた。
論文 参考訳(メタデータ) (2021-05-24T21:40:16Z) - Graph Contrastive Clustering [131.67881457114316]
本稿では,クラスタリングタスクに適用可能な新しいグラフコントラスト学習フレームワークを提案し,gcc(graph constrastive clustering)法を考案した。
特に、グラフラプラシアンに基づくコントラスト損失は、より識別的かつクラスタリングフレンドリーな特徴を学ぶために提案されている。
一方で、よりコンパクトなクラスタリング割り当てを学ぶために、グラフベースのコントラスト学習戦略が提案されている。
論文 参考訳(メタデータ) (2021-04-03T15:32:49Z) - Deep adaptive fuzzy clustering for evolutionary unsupervised
representation learning [2.8028128734158164]
大規模で複雑な画像のクラスタ割り当ては、パターン認識とコンピュータビジョンにおいて重要かつ困難な作業です。
反復最適化による新しい進化的教師なし学習表現モデルを提案する。
ファジィメンバシップを利用して深層クラスタ割り当ての明確な構造を表現するディープリコンストラクションモデルに対して,共同でファジィクラスタリングを行った。
論文 参考訳(メタデータ) (2021-03-31T13:58:10Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。