NeurCAM: Interpretable Neural Clustering via Additive Models
- URL: http://arxiv.org/abs/2408.13361v1
- Date: Fri, 23 Aug 2024 20:32:57 GMT
- Title: NeurCAM: Interpretable Neural Clustering via Additive Models
- Authors: Nakul Upadhya, Eldan Cohen,
- Abstract summary: Interpretable clustering algorithms aim to group similar data points while explaining the obtained groups.
We introduce the Neural Clustering Additive Model (NeurCAM), a novel approach to the interpretable clustering problem.
Our approach significantly outperforms other interpretable clustering approaches when clustering on text data.
- Score: 3.4437947384641037
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretable clustering algorithms aim to group similar data points while explaining the obtained groups to support knowledge discovery and pattern recognition tasks. While most approaches to interpretable clustering construct clusters using decision trees, the interpretability of trees often deteriorates on complex problems where large trees are required. In this work, we introduce the Neural Clustering Additive Model (NeurCAM), a novel approach to the interpretable clustering problem that leverages neural generalized additive models to provide fuzzy cluster membership with additive explanations of the obtained clusters. To promote sparsity in our model's explanations, we introduce selection gates that explicitly limit the number of features and pairwise interactions leveraged. Additionally, we demonstrate the capacity of our model to perform text clustering that considers the contextual representation of the texts while providing explanations for the obtained clusters based on uni- or bi-word terms. Extensive experiments show that NeurCAM achieves performance comparable to black-box methods on tabular datasets while remaining interpretable. Additionally, our approach significantly outperforms other interpretable clustering approaches when clustering on text data.
Related papers
- Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Using Decision Trees for Interpretable Supervised Clustering [0.0]
supervised clustering aims at forming clusters of labelled data with high probability densities.
We are particularly interested in finding clusters of data of a given class and describing the clusters with the set of comprehensive rules.
arXiv Detail & Related papers (2023-07-16T17:12:45Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Enhancing cluster analysis via topological manifold learning [0.3823356975862006]
We show that inferring the topological structure of a dataset before clustering can considerably enhance cluster detection.
We combine manifold learning method UMAP for inferring the topological structure with density-based clustering method DBSCAN.
arXiv Detail & Related papers (2022-07-01T15:53:39Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Learning the Precise Feature for Cluster Assignment [39.320210567860485]
We propose a framework which integrates representation learning and clustering into a single pipeline for the first time.
The proposed framework exploits the powerful ability of recently developed generative models for learning intrinsic features.
Experimental results show that the performance of the proposed method is superior, or at least comparable to, the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-11T04:08:54Z) - Deep Descriptive Clustering [24.237000220172906]
This paper explores a novel setting for performing clustering on complex data while simultaneously generating explanations using interpretable tags.
We form good clusters by maximizing the mutual information between empirical distribution on the inputs and the induced clustering labels for clustering objectives.
Experimental results on public data demonstrate that our model outperforms competitive baselines in clustering performance.
arXiv Detail & Related papers (2021-05-24T21:40:16Z) - Graph Contrastive Clustering [131.67881457114316]
We propose a novel graph contrastive learning framework, which is then applied to the clustering task and we come up with the Graph Constrastive Clustering(GCC) method.
Specifically, on the one hand, the graph Laplacian based contrastive loss is proposed to learn more discriminative and clustering-friendly features.
On the other hand, a novel graph-based contrastive learning strategy is proposed to learn more compact clustering assignments.
arXiv Detail & Related papers (2021-04-03T15:32:49Z) - Deep adaptive fuzzy clustering for evolutionary unsupervised
representation learning [2.8028128734158164]
Cluster assignment of large and complex images is a crucial but challenging task in pattern recognition and computer vision.
We present a novel evolutionary unsupervised learning representation model with iterative optimization.
We jointly fuzzy clustering to the deep reconstruction model, in which fuzzy membership is utilized to represent a clear structure of deep cluster assignments.
arXiv Detail & Related papers (2021-03-31T13:58:10Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.