HERCULES: Hierarchical Embedding-based Recursive Clustering Using LLMs for Efficient Summarization
- URL: http://arxiv.org/abs/2506.19992v1
- Date: Tue, 24 Jun 2025 20:22:00 GMT
- Title: HERCULES: Hierarchical Embedding-based Recursive Clustering Using LLMs for Efficient Summarization
- Authors: Gabor Petnehazi, Bernadett Aradi,
- Abstract summary: HERCULES is an algorithm and Python package designed for hierarchical k-means clustering of diverse data types.<n>It generates semantically rich titles and descriptions for clusters at each level of the hierarchy.<n>An interactive visualization tool facilitates thorough analysis and understanding of the clustering results.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The explosive growth of complex datasets across various modalities necessitates advanced analytical tools that not only group data effectively but also provide human-understandable insights into the discovered structures. We introduce HERCULES (Hierarchical Embedding-based Recursive Clustering Using LLMs for Efficient Summarization), a novel algorithm and Python package designed for hierarchical k-means clustering of diverse data types, including text, images, and numeric data (processed one modality per run). HERCULES constructs a cluster hierarchy by recursively applying k-means clustering, starting from individual data points at level 0. A key innovation is its deep integration of Large Language Models (LLMs) to generate semantically rich titles and descriptions for clusters at each level of the hierarchy, significantly enhancing interpretability. The algorithm supports two main representation modes: `direct' mode, which clusters based on original data embeddings or scaled numeric features, and `description' mode, which clusters based on embeddings derived from LLM-generated summaries. Users can provide a `topic\_seed' to guide LLM-generated summaries towards specific themes. An interactive visualization tool facilitates thorough analysis and understanding of the clustering results. We demonstrate HERCULES's capabilities and discuss its potential for extracting meaningful, hierarchical knowledge from complex datasets.
Related papers
- Hierarchical clustering with maximum density paths and mixture models [44.443538161979056]
t-NEB is a probabilistically grounded hierarchical clustering method.<n>It yields state-of-the-art clustering performance on naturalistic high-dimensional data.
arXiv Detail & Related papers (2025-03-19T15:37:51Z) - An Improved Deep Learning Model for Word Embeddings Based Clustering for Large Text Datasets [0.0]
We present an improved clustering technique for large textual datasets by leveraging fine-tuned word embeddings.<n>We show significant improvements in clustering metrics such as silhouette score, purity, and adjusted rand index (ARI)<n>The proposed technique will help to bridge the gap between semantic understanding and statistical robustness for large-scale text-mining tasks.
arXiv Detail & Related papers (2025-02-22T08:28:41Z) - k-LLMmeans: Scalable, Stable, and Interpretable Text Clustering via LLM-based Centroids [0.0]
k-LLMmeans is a novel modification of the k-means algorithm for text clustering.<n>We show that k-LLMmeans consistently outperforms k-means and other traditional baselines.<n>We present a case study on sequential text streams and introduce a new benchmark dataset constructed from StackExchange to evaluate text-stream clustering methods.
arXiv Detail & Related papers (2025-02-12T19:50:22Z) - Organizing Unstructured Image Collections using Natural Language [37.16101036513514]
We introduce the task of Open-ended Semantic Multiple Clustering (OpenSMC), which aims to automatically discover clustering criteria from large, unstructured image collections.<n>Our framework, X-Cluster: eXploratory Clustering, treats text as a reasoning proxy, and groups images into meaningful clusters per criterion.<n>X-Cluster effectively reveals meaningful partitions and enables downstream applications such as bias discovery and social media image popularity analysis.
arXiv Detail & Related papers (2024-10-07T17:21:46Z) - NeurCAM: Interpretable Neural Clustering via Additive Models [3.4437947384641037]
Interpretable clustering algorithms aim to group similar data points while explaining the obtained groups.
We introduce the Neural Clustering Additive Model (NeurCAM), a novel approach to the interpretable clustering problem.
Our approach significantly outperforms other interpretable clustering approaches when clustering on text data.
arXiv Detail & Related papers (2024-08-23T20:32:57Z) - Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
Multi-task learning (MTL) is a powerful machine learning paradigm designed to leverage shared knowledge across tasks to improve generalization and performance.
We propose an MTL approach at the intersection between task clustering and feature transformation based on a two-phase iterative aggregation of targets and features.
In both phases, a key aspect is to preserve the interpretability of the reduced targets and features through the aggregation with the mean, which is motivated by applications to Earth science.
arXiv Detail & Related papers (2024-06-12T08:30:16Z) - Context-Aware Clustering using Large Language Models [20.971691166166547]
We propose CACTUS (Context-Aware ClusTering with aUgmented triplet losS) for efficient and effective supervised clustering of entity subsets.
This paper introduces a novel approach towards clustering entity subsets using Large Language Models (LLMs) by capturing context via a scalable inter-entity attention mechanism.
arXiv Detail & Related papers (2024-05-02T03:50:31Z) - Large Language Models Enable Few-Shot Clustering [88.06276828752553]
We show that large language models can amplify an expert's guidance to enable query-efficient, few-shot semi-supervised text clustering.
We find incorporating LLMs in the first two stages can routinely provide significant improvements in cluster quality.
arXiv Detail & Related papers (2023-07-02T09:17:11Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
In this paper we offer a new perspective on the well established agglomerative clustering algorithm, focusing on recovery of hierarchical structure.
We recommend a simple variant of the standard algorithm, in which clusters are merged by maximum average dot product and not, for example, by minimum distance or within-cluster variance.
We demonstrate that the tree output by this algorithm provides a bona fide estimate of generative hierarchical structure in data, under a generic probabilistic graphical model.
arXiv Detail & Related papers (2023-05-24T11:05:12Z) - Cluster Explanation via Polyhedral Descriptions [0.0]
Clustering is an unsupervised learning problem that aims to partition unlabelled data points into groups with similar features.
Traditional clustering algorithms provide limited insight into the groups they find as their main focus is accuracy and not the interpretability of the group assignments.
We introduce a new approach to explain clusters by constructing polyhedra around each cluster while minimizing either the complexity of the resulting polyhedra or the number of features used in the description.
arXiv Detail & Related papers (2022-10-17T07:26:44Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
Clustering analysis plays an indispensable role in machine learning and data mining.
Deep clustering, which can learn clustering-friendly representations using deep neural networks, has been broadly applied in a wide range of clustering tasks.
Existing surveys for deep clustering mainly focus on the single-view fields and the network architectures, ignoring the complex application scenarios of clustering.
arXiv Detail & Related papers (2022-10-09T02:31:32Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Deep Descriptive Clustering [24.237000220172906]
This paper explores a novel setting for performing clustering on complex data while simultaneously generating explanations using interpretable tags.
We form good clusters by maximizing the mutual information between empirical distribution on the inputs and the induced clustering labels for clustering objectives.
Experimental results on public data demonstrate that our model outperforms competitive baselines in clustering performance.
arXiv Detail & Related papers (2021-05-24T21:40:16Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.