論文の概要: CodeRefine: A Pipeline for Enhancing LLM-Generated Code Implementations of Research Papers
- arxiv url: http://arxiv.org/abs/2408.13366v1
- Date: Fri, 23 Aug 2024 20:51:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 19:49:09.589217
- Title: CodeRefine: A Pipeline for Enhancing LLM-Generated Code Implementations of Research Papers
- Title(参考訳): CodeRefine: 研究論文のLLM生成コード実装を強化するパイプライン
- Authors: Ekaterina Trofimova, Emil Sataev, Abhijit Singh Jowhari,
- Abstract要約: CodeRefineは、研究論文の方法論を大規模言語モデルを用いて機能コードに変換するためのフレームワークである。
我々の多段階アプローチはまず、論文からキーテキストチャンクを抽出して要約し、それらのコード関連性を分析し、知識グラフを作成する。
その後、この構造化表現からコードが生成され、提案されたリフレクション検索拡張生成アプローチによって拡張される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents CodeRefine, a novel framework for automatically transforming research paper methodologies into functional code using Large Language Models (LLMs). Our multi-step approach first extracts and summarizes key text chunks from papers, analyzes their code relevance, and creates a knowledge graph using a predefined ontology. Code is then generated from this structured representation and enhanced through a proposed retrospective retrieval-augmented generation approach. CodeRefine addresses the challenge of bridging theoretical research and practical implementation, offering a more accurate alternative to LLM zero-shot prompting. Evaluations on diverse scientific papers demonstrate CodeRefine's ability to improve code implementation from the paper, potentially accelerating the adoption of cutting-edge algorithms in real-world applications.
- Abstract(参考訳): 本稿では,Large Language Models (LLMs) を用いた研究論文の方法論を関数型コードに自動変換する新しいフレームワークであるCodeRefineを提案する。
我々の多段階アプローチは、まず論文からキーテキストチャンクを抽出して要約し、それらのコード関連性を分析し、事前に定義されたオントロジーを用いて知識グラフを作成する。
その後、この構造化表現からコードが生成され、提案されたリフレクション検索拡張生成アプローチによって拡張される。
CodeRefineは理論研究と実践的な実装の橋渡しという課題に対処し、LLMゼロショットプロンプトのより正確な代替手段を提供する。
さまざまな科学的論文の評価では、CodeRefineが論文からコード実装を改善する能力を示し、現実世界のアプリケーションにおける最先端アルゴリズムの採用を加速する可能性がある。
関連論文リスト
- CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [103.116634967815]
CodeXEmbedは400Mから7Bパラメータの大規模なコード埋め込みモデルのファミリーである。
我々の新しいトレーニングパイプラインは、複数のプログラミング言語を統合し、様々なコード関連タスクを共通の検索フレームワークに変換する。
私たちの7Bモデルは、コード検索において新しい最先端(SOTA)を設定し、以前の主要なモデルであるVoyage-CodeをCoIRベンチマークで20%以上上回っています。
論文 参考訳(メタデータ) (2024-11-19T16:54:45Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - A Survey on Evaluating Large Language Models in Code Generation Tasks [30.256255254277914]
本稿では,コード生成タスクにおけるLarge Language Models (LLMs) の性能評価に使用される現在の手法と指標について概説する。
自動ソフトウェア開発の需要が急速に増加し、LLMはコード生成の分野で大きな可能性を示してきた。
論文 参考訳(メタデータ) (2024-08-29T12:56:06Z) - EPiC: Cost-effective Search-based Prompt Engineering of LLMs for Code Generation [8.009881267479189]
大規模言語モデル(LLM)は、特にコード生成において、様々なソフトウェア開発タスクで利用が増加している。
我々は、コードのための進化的プロンプトエンジニアリング(EPiC)という別のアプローチを提案し、高品質なコードを生成するより良いプロンプトに向けて、元のプロンプトを進化させる。
最先端(SOTA)LLMベースのコード生成モデルに対する評価は,コスト効率の観点から,EPiCがすべてのベースラインを上回っていることを示している。
論文 参考訳(メタデータ) (2024-08-20T21:15:36Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Rewriting the Code: A Simple Method for Large Language Model Augmented Code Search [7.822427053078387]
Generation-Augmented Retrieval (GAR)フレームワークは、クエリを拡張するための例のコードスニペットを生成する。
本稿では、forスタイルの正規化内でコード(ReCo)を書き換える、シンプルで効果的な方法を提案する。
コードスタイル類似度(Code Style similarity)は、コード内のスタイリスティック類似度を定量化するための最初のメートル法である。
論文 参考訳(メタデータ) (2024-01-09T12:12:50Z) - Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for
Code Generation [22.219645213202178]
本稿では,SeCoT というコードの意味情報を抽出する "Semantic Chain-of-Thought" 手法を提案する。
本研究では,SeCoTが最先端の性能を実現し,大規模モデルやコード生成の可能性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-10-16T05:09:58Z) - REINFOREST: Reinforcing Semantic Code Similarity for Cross-Lingual Code Search Models [11.78036105494679]
本稿では,Large Language Models (LLMs) の性能を向上させる新しいコード・ツー・コード検索手法を提案する。
本稿では,学習中の動的情報を検索対象のコーパスや,推論時に検索クエリを実行することなく符号化するコード検索手法を提案する。
論文 参考訳(メタデータ) (2023-05-05T20:46:56Z) - Generation-Augmented Query Expansion For Code Retrieval [51.20943646688115]
本稿では,次世代のクエリ拡張フレームワークを提案する。
人間の検索プロセスにインスパイアされた – 検索前に回答をスケッチする。
CodeSearchNetベンチマークで、最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2022-12-20T23:49:37Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
コード検索のためのマルチモーダルコントラスト学習とソフトデータ拡張を用いた新しい手法を提案する。
我々は,6つのプログラミング言語を用いた大規模データセットにおけるアプローチの有効性を評価するために,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-04-07T08:49:27Z) - A Transformer-based Approach for Source Code Summarization [86.08359401867577]
コードトークン間のペア関係をモデル化することにより,要約のためのコード表現を学習する。
アプローチは単純であるにもかかわらず、最先端技術よりもかなりの差があることが示される。
論文 参考訳(メタデータ) (2020-05-01T23:29:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。