論文の概要: MICM: Rethinking Unsupervised Pretraining for Enhanced Few-shot Learning
- arxiv url: http://arxiv.org/abs/2408.13385v1
- Date: Fri, 23 Aug 2024 21:32:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 19:49:09.562004
- Title: MICM: Rethinking Unsupervised Pretraining for Enhanced Few-shot Learning
- Title(参考訳): MICM:Few-shot学習の強化のための教師なし事前訓練の再考
- Authors: Zhenyu Zhang, Guangyao Chen, Yixiong Zou, Zhimeng Huang, Yuhua Li, Ruixuan Li,
- Abstract要約: 教師なしのFew-Shot Learningは、最初のトレーニングフェーズにおける注釈付きデータセットへの依存を減らすことで、この分割を橋渡ししようとしている。
まず,マスクド画像モデリング (MIM) とコントラスト学習 (CL) が学習課題に与える影響を定量的に評価した。
教師なし事前訓練における一般化と差別性の間のトレードオフに対処するために,マスク付き画像コントラストモデリング(MICM)という新しいパラダイムを導入する。
- 参考スコア(独自算出の注目度): 18.152453141040464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humans exhibit a remarkable ability to learn quickly from a limited number of labeled samples, a capability that starkly contrasts with that of current machine learning systems. Unsupervised Few-Shot Learning (U-FSL) seeks to bridge this divide by reducing reliance on annotated datasets during initial training phases. In this work, we first quantitatively assess the impacts of Masked Image Modeling (MIM) and Contrastive Learning (CL) on few-shot learning tasks. Our findings highlight the respective limitations of MIM and CL in terms of discriminative and generalization abilities, which contribute to their underperformance in U-FSL contexts. To address these trade-offs between generalization and discriminability in unsupervised pretraining, we introduce a novel paradigm named Masked Image Contrastive Modeling (MICM). MICM creatively combines the targeted object learning strength of CL with the generalized visual feature learning capability of MIM, significantly enhancing its efficacy in downstream few-shot learning inference. Extensive experimental analyses confirm the advantages of MICM, demonstrating significant improvements in both generalization and discrimination capabilities for few-shot learning. Our comprehensive quantitative evaluations further substantiate the superiority of MICM, showing that our two-stage U-FSL framework based on MICM markedly outperforms existing leading baselines.
- Abstract(参考訳): 人間は限られた数のラベル付きサンプルから素早く学習する能力を持っている。
Unsupervised Few-Shot Learning (U-FSL)は、最初のトレーニングフェーズにおける注釈付きデータセットへの依存を減らすことで、この分割を橋渡ししようとしている。
本研究では,まず,マスクド画像モデリング(MIM)とコントラスト学習(CL)が数ショット学習タスクに与える影響を定量的に評価する。
本研究は,MIM と CL の識別能力および一般化能力の限界に注目し,U-FSL の文脈におけるそれらの過小評価に寄与することを示した。
教師なし事前学習における一般化と差別性の間のトレードオフに対処するために,マスク付き画像コントラストモデリング(MICM)という新しいパラダイムを導入する。
MICMは、CLの目標となる物体学習強度とMIMの一般化された視覚特徴学習能力とを創造的に組み合わせ、下流数ショット学習推論におけるその効果を著しく向上させる。
広汎な実験分析によりMICMの利点が確認され、数ショット学習における一般化と識別能力の両面で有意な改善が示された。
総合的な定量的評価はMICMの優位性をさらに裏付けるものであり、MICMに基づく2段階のU-FSLフレームワークが既存の先行ベースラインを著しく上回ることを示す。
関連論文リスト
- Exploring Large Language Models for Multimodal Sentiment Analysis: Challenges, Benchmarks, and Future Directions [0.0]
マルチモーダル・アスペクトベース感性分析(MABSA)は、テキストや画像を含む多モーダル情報からアスペクト項とその対応する感情極性を抽出することを目的としている。
従来の教師付き学習手法はこの課題において有効性を示したが、大規模言語モデル(LLM)のMABSAへの適応性は未だ不明である。
Llama2、LLaVA、ChatGPTなどのLLMの最近の進歩は、一般的なタスクにおいて強力な能力を示しているが、MABSAのような複雑できめ細かなシナリオでは、その性能が過小評価されている。
論文 参考訳(メタデータ) (2024-11-23T02:17:10Z) - Evaluating and Advancing Multimodal Large Language Models in Ability Lens [30.083110119139793]
textbfAbilityLensは、6つの重要な知覚能力にまたがるMLLMを評価するために設計された統一ベンチマークである。
現在のモデルの長所と短所を特定し、安定性のパターンを強調し、オープンソースモデルとクローズドソースモデルの顕著なパフォーマンスギャップを明らかにします。
また、早期訓練段階から最高の能力チェックポイントを組み合わせ、能力衝突による性能低下を効果的に軽減する、簡易な能力特異的モデルマージ手法を設計する。
論文 参考訳(メタデータ) (2024-11-22T04:41:20Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
本稿では,MLLM評価におけるLarge Language Model (LLM)バックボーンの役割について検討する。
本研究は4つのMLLMベンチマークと8つの最先端MLLMベンチマークを含む。
鍵となる発見は、いくつかのベンチマークでは視覚的な入力がなくても高いパフォーマンスを実現しており、最大50%のエラーレートは、LLMバックボーンにおける不十分な世界的知識に起因していることを示している。
論文 参考訳(メタデータ) (2024-10-16T07:49:13Z) - Detecting Training Data of Large Language Models via Expectation Maximization [62.28028046993391]
メンバーシップ推論攻撃(MIA)は、特定のインスタンスがターゲットモデルのトレーニングデータの一部であるかどうかを判断することを目的としている。
大規模言語モデル(LLM)にMIAを適用することは、事前学習データの大規模化と、会員シップのあいまいさによって、ユニークな課題をもたらす。
EM-MIAは,予測最大化アルゴリズムを用いて,メンバーシップスコアとプレフィックススコアを反復的に洗練するLLMの新しいMIA手法である。
論文 参考訳(メタデータ) (2024-10-10T03:31:16Z) - Deciphering Cross-Modal Alignment in Large Vision-Language Models with Modality Integration Rate [118.37653302885607]
本稿では,LVLM(Large Vision Language Models)のマルチモーダル事前学習品質を示すために,MIR(Modality Integration Rate)を提案する。
MIRは、トレーニングデータ選択、トレーニング戦略スケジュール、モデルアーキテクチャ設計に重点を置いて、トレーニング前の結果を改善する。
論文 参考訳(メタデータ) (2024-10-09T17:59:04Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
本研究では,VALSEベンチマークを用いたマルチモーダル大規模言語モデル(MLLM)の性能評価を目的とした。
我々は,モデルサイズや事前学習データセットの異なる最先端MLLMの包括的評価を行った。
論文 参考訳(メタデータ) (2024-07-17T11:26:47Z) - Chain-of-Thought Prompting for Demographic Inference with Large Multimodal Models [58.58594658683919]
大規模マルチモーダルモデル (LMM) は、様々な研究課題において変換可能性を示している。
以上の結果から,LMMはゼロショット学習,解釈可能性,未修正入力の処理に長所があることが示唆された。
本稿では,目標外予測問題を効果的に緩和するChain-of-Thought拡張プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-05-24T16:26:56Z) - Beyond Task Performance: Evaluating and Reducing the Flaws of Large
Multimodal Models with In-Context Learning [105.77733287326308]
我々は,3Bから80Bパラメータスケールまでの最近のオープンソースLMMを,幻覚,禁忌,構成性,説明可能性,指示に従う5つの異なる軸で評価した。
トレーニングフリーなインコンテキスト学習(ICL)をソリューションとして検討し、それがこれらの制限に与える影響について検討する。
ICL研究に基づき、ICLをさらに推し進め、Multitask-ICL、Chain-of-Hindsight-ICL、Self-Correcting-ICLといった新しい多モードICL変種を提案する。
論文 参考訳(メタデータ) (2023-10-01T12:02:59Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
本研究では,大規模言語モデル(LLM)における文脈内学習を促進する新しい2段階フレームワークを提案する。
具体的には、当社のフレームワークでは、ICLプロセスをDeep-ThinkingとTest Stageの2つの別々のステージに分類しています。
ディープシンキング段階にはユニークな注意機構、すなわち反復的な注意強化機構が組み込まれており、複数の情報の蓄積を可能にしている。
論文 参考訳(メタデータ) (2023-05-22T13:18:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。