論文の概要: Online Continuous Generalized Category Discovery
- arxiv url: http://arxiv.org/abs/2408.13492v1
- Date: Sat, 24 Aug 2024 06:30:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 19:19:21.626863
- Title: Online Continuous Generalized Category Discovery
- Title(参考訳): オンライン連続一般化カテゴリー発見
- Authors: Keon-Hee Park, Hakyung Lee, Kyungwoo Song, Gyeong-Moon Park,
- Abstract要約: オンライン連続一般化カテゴリディスカバリ(OCGCD)を導入し,データの生成と削除をリアルタイムで行うデータストリームの動的性質について考察する。
また,エネルギー誘導型発見によって新しいカテゴリーをオンライン的に発見し,エネルギーに基づくコントラスト的損失による差別的学習を促進する新しい手法であるDEANを提案する。
- 参考スコア(独自算出の注目度): 17.92255058111739
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the advancement of deep neural networks in computer vision, artificial intelligence (AI) is widely employed in real-world applications. However, AI still faces limitations in mimicking high-level human capabilities, such as novel category discovery, for practical use. While some methods utilizing offline continual learning have been proposed for novel category discovery, they neglect the continuity of data streams in real-world settings. In this work, we introduce Online Continuous Generalized Category Discovery (OCGCD), which considers the dynamic nature of data streams where data can be created and deleted in real time. Additionally, we propose a novel method, DEAN, Discovery via Energy guidance and feature AugmentatioN, which can discover novel categories in an online manner through energy-guided discovery and facilitate discriminative learning via energy-based contrastive loss. Furthermore, DEAN effectively pseudo-labels unlabeled data through variance-based feature augmentation. Experimental results demonstrate that our proposed DEAN achieves outstanding performance in proposed OCGCD scenario.
- Abstract(参考訳): コンピュータビジョンにおけるディープニューラルネットワークの進歩により、人工知能(AI)は現実世界の応用に広く利用されている。
しかし、AIは依然として、新しいカテゴリー発見のような高度な人間の能力を模倣する際の限界に直面している。
オフライン連続学習を利用した新しいカテゴリー発見手法が提案されているが、実環境におけるデータストリームの連続性は無視されている。
本研究では,オンライン連続一般化カテゴリー発見(OCGCD)を紹介し,データストリームの動的性質について考察する。
さらに,エネルギー誘導による新たなカテゴリーの発見と,エネルギーに基づくコントラッシブ・ロスによる差別的学習を促進する手法であるDEAN,ディスカバリ・バイ・エナジー・ガイダンス,機能拡張比Nを提案する。
さらに、DECANは分散ベースの特徴拡張を通じて、ラベルなしデータを効果的に擬似ラベルする。
実験の結果,提案手法はOCGCDシナリオにおいて優れた性能を発揮することが示された。
関連論文リスト
- On the Robustness of Fully-Spiking Neural Networks in Open-World Scenarios using Forward-Only Learning Algorithms [6.7236795813629]
我々はフォワードフォワードアルゴリズム(FFA)を用いたOoD(Out-of-Distribution)検出のための新しいアルゴリズムを開発した。
提案手法は, 標本の潜在表現からクラス表現多様体への距離を用いて, 分布内(ID)データに属するサンプルの確率を測定する。
また,任意のクラスの分布から遠ざかるサンプルの特徴を強調表示するグラデーションフリー属性手法を提案する。
論文 参考訳(メタデータ) (2024-07-19T08:08:17Z) - Evaluating the Effectiveness of Video Anomaly Detection in the Wild: Online Learning and Inference for Real-world Deployment [2.1374208474242815]
Video Anomaly Detection (VAD) は、監視から医療まで幅広い応用の鍵となる、ビデオストリームにおける異常な活動を特定する。
実生活環境でのVADに取り組むことは、人間の行動の動的な性質、環境の変化、ドメインシフトによって大きな課題となる。
オンライン学習は、モデルを新しい情報に継続的に適応させることによって、この問題を軽減するための潜在的戦略である。
論文 参考訳(メタデータ) (2024-04-29T14:47:32Z) - Enhancing Network Intrusion Detection Performance using Generative Adversarial Networks [0.25163931116642785]
GAN(Generative Adversarial Networks)の統合によるNIDSの性能向上のための新しいアプローチを提案する。
GANは、現実世界のネットワークの振る舞いを忠実に模倣する合成ネットワークトラフィックデータを生成する。
NIDSへのGANの統合は,訓練データに制限のある攻撃に対する侵入検知性能の向上につながる可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-11T04:01:15Z) - Towards Open-World EEG Decoding via Deep Learning [24.23699504873384]
深層学習(DL)は脳波復号問題に対する潜在的な解決策として浮上している。
本稿では,オープンワールド脳波復号のためのDL手法について概説する。
現実世界のアプリケーションにおいて、脳波復号のための将来の研究を刺激する有望な研究方向を特定する。
論文 参考訳(メタデータ) (2021-12-08T14:18:21Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
GAN(Generative Adversarial Network)は、高忠実度画像を合成するために、訓練に十分なデータを必要とする。
近年の研究では、差別者の過度な適合により、限られたデータでGANを訓練することは困難であることが示されている。
本稿では,APA (Adaptive Pseudo Augmentation) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-12T18:13:45Z) - CoReD: Generalizing Fake Media Detection with Continual Representation
using Distillation [17.97648576135166]
本研究では、継続学習(CoL)、表現学習(ReL)、知識蒸留(KD)という概念を用いた継続表現法を提案する。
我々はCoReDを設計し、新しいディープフェイクおよびGAN生成合成顔データセット上で逐次ドメイン適応タスクを実行する。
提案手法は,低品質のディープフェイク映像やGAN生成画像の検出に有効であることを示す。
論文 参考訳(メタデータ) (2021-07-06T06:07:17Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - Offline Reinforcement Learning from Images with Latent Space Models [60.69745540036375]
オフライン強化学習(RL)とは、環境相互作用の静的データセットからポリシーを学習する問題を指します。
オフラインRLのためのモデルベースアルゴリズムの最近の進歩の上に構築し、それらを高次元の視覚観測空間に拡張する。
提案手法は, 実測可能であり, 未知のPOMDPにおけるELBOの下限の最大化に対応している。
論文 参考訳(メタデータ) (2020-12-21T18:28:17Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z) - Continual Learning for Natural Language Generation in Task-oriented
Dialog Systems [72.92029584113676]
自然言語生成(NLG)はタスク指向対話システムにおいて重要な要素である。
我々は,NLGの知識を新たなドメインや機能に段階的に拡張する"継続的学習"環境で研究する。
この目標に対する大きな課題は、破滅的な忘れことであり、継続的に訓練されたモデルは、以前に学んだ知識を忘れがちである。
論文 参考訳(メタデータ) (2020-10-02T10:32:29Z) - FIVES: Feature Interaction Via Edge Search for Large-Scale Tabular Data [106.76845921324704]
本稿では,FIVES (Feature Interaction Via Edge Search) という新しい手法を提案する。
FIVESは、定義された特徴グラフ上のエッジを探すために、インタラクティブな特徴生成のタスクを定式化する。
本稿では,対話的特徴の探索を動機づける理論的証拠を提示する。
論文 参考訳(メタデータ) (2020-07-29T03:33:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。