論文の概要: CoReD: Generalizing Fake Media Detection with Continual Representation
using Distillation
- arxiv url: http://arxiv.org/abs/2107.02408v1
- Date: Tue, 6 Jul 2021 06:07:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-07 13:52:00.037850
- Title: CoReD: Generalizing Fake Media Detection with Continual Representation
using Distillation
- Title(参考訳): CoReD:蒸留による連続表現によるフェイクメディア検出の一般化
- Authors: Minha Kim and Shahroz Tariq and Simon S. Woo
- Abstract要約: 本研究では、継続学習(CoL)、表現学習(ReL)、知識蒸留(KD)という概念を用いた継続表現法を提案する。
我々はCoReDを設計し、新しいディープフェイクおよびGAN生成合成顔データセット上で逐次ドメイン適応タスクを実行する。
提案手法は,低品質のディープフェイク映像やGAN生成画像の検出に有効であることを示す。
- 参考スコア(独自算出の注目度): 17.97648576135166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the last few decades, artificial intelligence research has made
tremendous strides, but it still heavily relies on fixed datasets in stationary
environments. Continual learning is a growing field of research that examines
how AI systems can learn sequentially from a continuous stream of linked data
in the same way that biological systems do. Simultaneously, fake media such as
deepfakes and synthetic face images have emerged as significant to current
multimedia technologies. Recently, numerous method has been proposed which can
detect deepfakes with high accuracy. However, they suffer significantly due to
their reliance on fixed datasets in limited evaluation settings. Therefore, in
this work, we apply continuous learning to neural networks' learning dynamics,
emphasizing its potential to increase data efficiency significantly. We propose
Continual Representation using Distillation (CoReD) method that employs the
concept of Continual Learning (CoL), Representation Learning (ReL), and
Knowledge Distillation (KD). We design CoReD to perform sequential domain
adaptation tasks on new deepfake and GAN-generated synthetic face datasets,
while effectively minimizing the catastrophic forgetting in a teacher-student
model setting. Our extensive experimental results demonstrate that our method
is efficient at domain adaptation to detect low-quality deepfakes videos and
GAN-generated images from several datasets, outperforming the-state-of-art
baseline methods.
- Abstract(参考訳): 過去数十年間、人工知能の研究は大きな進歩を遂げてきたが、静止環境における固定データセットに大きく依存している。
継続的学習は、AIシステムが生物学的システムと同じ方法で、リンクされたデータの連続的なストリームから逐次学習する方法を研究する、成長する研究分野である。
同時に、ディープフェイクや合成顔画像などの偽メディアが、現在のマルチメディア技術にとって重要な存在である。
近年,ディープフェイクを高精度に検出する手法が多数提案されている。
しかし、限られた評価設定で固定データセットに依存するため、彼らは著しく苦しむ。
そこで本研究では,ニューラルネットワークの学習力学に連続学習を適用し,データ効率を大幅に向上させる可能性を強調した。
本研究では、継続学習(CoL)、表現学習(ReL)、知識蒸留(KD)という概念を取り入れた蒸留法(CoReD)を用いた連続表現を提案する。
我々はCoReDを設計し、教師-学生モデル設定における破滅的な忘れを効果的に最小化しつつ、新しいディープフェイクおよびGAN生成合成顔データセット上で逐次ドメイン適応タスクを実行する。
提案手法は,複数のデータセットから低品質のディープフェイク映像とGAN生成画像を検出し,最先端のベースライン法より優れていることを示す。
関連論文リスト
- Improving Deep Learning-based Automatic Cranial Defect Reconstruction by Heavy Data Augmentation: From Image Registration to Latent Diffusion Models [0.2911706166691895]
この研究は、パーソナライズされた頭蓋インプラントの自動モデリングにおける人工知能の分野に多大な貢献をしている。
重データの増大が定量的および定性的な結果の両方を著しく増加させることを示す。
また, 人工的に拡張したネットワークは, 実際の臨床的欠陥を再構築することに成功した。
論文 参考訳(メタデータ) (2024-06-10T15:34:23Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
本稿では,DAF(Disdisrepancy Aware Framework)を提案する。
本手法は,デコーダの欠陥同定に外見に依存しないキューを利用して,その合成外観への依存を緩和する。
単純な合成戦略の下では,既存の手法を大きなマージンで上回り,また,最先端のローカライゼーション性能も達成している。
論文 参考訳(メタデータ) (2023-10-11T15:21:40Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
条件付き可逆ニューラルネットワーク(cINN)に基づくドメイン転送手法を提案する。
提案手法は本質的に,その可逆的アーキテクチャによるサイクル一貫性を保証し,ネットワークトレーニングを最大限効率的に行うことができる。
提案手法は,2つの下流分類タスクにおいて,現実的なスペクトルデータの生成を可能にし,その性能を向上する。
論文 参考訳(メタデータ) (2023-03-17T18:00:27Z) - A Comparative Study of Data Augmentation Techniques for Deep Learning
Based Emotion Recognition [11.928873764689458]
感情認識のための一般的なディープラーニングアプローチを包括的に評価する。
音声信号の長距離依存性が感情認識に重要であることを示す。
スピード/レート向上は、モデル間で最も堅牢なパフォーマンス向上を提供する。
論文 参考訳(メタデータ) (2022-11-09T17:27:03Z) - FakeCLR: Exploring Contrastive Learning for Solving Latent Discontinuity
in Data-Efficient GANs [24.18718734850797]
Data-Efficient GAN(DE-GAN)は、限られたトレーニングデータで生成モデルを学習することを目的としている。
対照的な学習は、DE-GANの合成品質を高める大きな可能性を示している。
偽のサンプルに対してのみ対照的な学習を行うFakeCLRを提案する。
論文 参考訳(メタデータ) (2022-07-18T14:23:38Z) - FReTAL: Generalizing Deepfake Detection using Knowledge Distillation and
Representation Learning [17.97648576135166]
本稿では,FreTAL(Feature Representation Transfer Adaptation Learning)法を提案する。
我々の学生モデルは、事前学習した教師モデルから知識を抽出することで、新しいタイプのディープフェイクに迅速に適応することができる。
FRETALは、ドメイン適応タスクのすべてのベースラインを86.97%の精度で低品質のディープフェイクで上回っている。
論文 参考訳(メタデータ) (2021-05-28T06:54:10Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z) - Dataset Condensation with Gradient Matching [36.14340188365505]
本研究では,大規模なデータセットを,深層ニューラルネットワークをスクラッチからトレーニングするための情報的合成サンプルの小さなセットに凝縮させることを学習する,データセット凝縮という,データ効率のよい学習のためのトレーニングセット合成手法を提案する。
いくつかのコンピュータビジョンベンチマークでその性能を厳格に評価し、最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-10T16:30:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。