Learning a Factorized Orthogonal Latent Space using Encoder-only Architecture for Fault Detection; An Alarm management perspective
- URL: http://arxiv.org/abs/2408.13526v1
- Date: Sat, 24 Aug 2024 09:00:45 GMT
- Title: Learning a Factorized Orthogonal Latent Space using Encoder-only Architecture for Fault Detection; An Alarm management perspective
- Authors: Vahid MohammadZadeh Eivaghi, Mahdi Aliyari Shoorehdeli,
- Abstract summary: This paper introduces a novel encoder-based residual design that effectively decouples erroneously identified and deterministic components of process variables.
The proposed model employs two distinct encoders to factorize the latent space into two spaces: one for the deterministic part and the other for the part.
The proposed model significantly enhances prediction quality while achieving nearly zero false alarms and missed detections.
- Score: 0.2455468619225742
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: False and nuisance alarms in industrial fault detection systems are often triggered by uncertainty, causing normal process variable fluctuations to be erroneously identified as faults. This paper introduces a novel encoder-based residual design that effectively decouples the stochastic and deterministic components of process variables without imposing detection delay. The proposed model employs two distinct encoders to factorize the latent space into two orthogonal spaces: one for the deterministic part and the other for the stochastic part. To ensure the identifiability of the desired spaces, constraints are applied during training. The deterministic space is constrained to be smooth to guarantee determinism, while the stochastic space is required to resemble standard Gaussian noise. Additionally, a decorrelation term enforces the independence of the learned representations. The efficacy of this approach is demonstrated through numerical examples and its application to the Tennessee Eastman process, highlighting its potential for robust fault detection. By focusing decision logic solely on deterministic factors, the proposed model significantly enhances prediction quality while achieving nearly zero false alarms and missed detections, paving the way for improved operational safety and integrity in industrial environments.
Related papers
- Certifying Robustness of Learning-Based Keypoint Detection and Pose Estimation Methods [9.953693315812995]
This work addresses the certification of robustness of vision-based two-stage 6D object pose estimation.
The core idea is to transform the certification of local robustness into neural network verification for classification tasks.
arXiv Detail & Related papers (2024-07-31T19:02:54Z) - GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralAD is an anomaly detection framework designed to operate in semantic, near-distribution, and industrial settings.
We propose a novel self-supervised anomaly generation module that employs straightforward operations like noise addition and shuffling to patch features.
We extensively evaluated our approach on ten datasets, achieving state-of-the-art results in six and on-par performance in the remaining.
arXiv Detail & Related papers (2024-07-17T09:27:41Z) - Cost-Sensitive Uncertainty-Based Failure Recognition for Object Detection [1.8990839669542954]
We propose a cost-sensitive framework for object detection tailored to user-defined budgets.
We derive minimum thresholding requirements to prevent performance degradation.
We automate and optimize the thresholding process to maximize the failure recognition rate.
arXiv Detail & Related papers (2024-04-26T14:03:55Z) - Heteroscedastic Uncertainty Estimation Framework for Unsupervised Registration [32.081258147692395]
We propose a framework for heteroscedastic image uncertainty estimation.
It can adaptively reduce the influence of regions with high uncertainty during unsupervised registration.
Our method consistently outperforms baselines and produces sensible uncertainty estimates.
arXiv Detail & Related papers (2023-12-01T01:03:06Z) - Regularized Vector Quantization for Tokenized Image Synthesis [126.96880843754066]
Quantizing images into discrete representations has been a fundamental problem in unified generative modeling.
deterministic quantization suffers from severe codebook collapse and misalignment with inference stage while quantization suffers from low codebook utilization and reconstruction objective.
This paper presents a regularized vector quantization framework that allows to mitigate perturbed above issues effectively by applying regularization from two perspectives.
arXiv Detail & Related papers (2023-03-11T15:20:54Z) - An optimization method for out-of-distribution anomaly detection models [6.075775003017512]
Frequent false alarms impede the promotion of unsupervised anomaly detection algorithms in industrial applications.
An SVM-based classifier is exploited as a post-processing module to identify false alarms from the anomaly map at the object level.
arXiv Detail & Related papers (2023-02-02T08:29:10Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
We train a generative model to learn perturbations from data and define specifications with respect to the output of the learned model.
A unique challenge arising from this setting is that existing verifiers cannot tightly approximate sigmoid activations.
We propose a general meta-algorithm for handling sigmoid activations which leverages classical notions of counter-example-guided abstraction refinement.
arXiv Detail & Related papers (2022-06-08T04:09:13Z) - Neuro-Symbolic Entropy Regularization [78.16196949641079]
In structured prediction, the goal is to jointly predict many output variables that together encode a structured object.
One approach -- entropy regularization -- posits that decision boundaries should lie in low-probability regions.
We propose a loss, neuro-symbolic entropy regularization, that encourages the model to confidently predict a valid object.
arXiv Detail & Related papers (2022-01-25T06:23:10Z) - Localization Uncertainty Estimation for Anchor-Free Object Detection [48.931731695431374]
There are several limitations of the existing uncertainty estimation methods for anchor-based object detection.
We propose a new localization uncertainty estimation method called UAD for anchor-free object detection.
Our method captures the uncertainty in four directions of box offsets that are homogeneous, so that it can tell which direction is uncertain.
arXiv Detail & Related papers (2020-06-28T13:49:30Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
We propose a novel detector coined as ScopeNet, which models anchors of each location as a mutually dependent relationship.
With our concise and effective design, the proposed ScopeNet achieves state-of-the-art results on COCO.
arXiv Detail & Related papers (2020-05-11T04:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.