論文の概要: Advancing Enterprise Spatio-Temporal Forecasting Applications: Data Mining Meets Instruction Tuning of Language Models For Multi-modal Time Series Analysis in Low-Resource Settings
- arxiv url: http://arxiv.org/abs/2408.13622v1
- Date: Sat, 24 Aug 2024 16:32:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 18:49:22.089049
- Title: Advancing Enterprise Spatio-Temporal Forecasting Applications: Data Mining Meets Instruction Tuning of Language Models For Multi-modal Time Series Analysis in Low-Resource Settings
- Title(参考訳): エンタープライズ時空間予測アプリケーションの改善:低リソース環境でのマルチモーダル時系列分析のための言語モデルのインストラクションチューニングとデータマイニング
- Authors: Sagar Srinivas Sakhinana, Geethan Sannidhi, Chidaksh Ravuru, Venkataramana Runkana,
- Abstract要約: パティオ時間予測は輸送、物流、サプライチェーン管理において重要である。
本稿では,従来の予測手法の強みと小言語モデルの命令チューニングを融合した動的マルチモーダル手法を提案する。
我々のフレームワークは、推論速度とデータプライバシ/セキュリティを維持しながら、計算とメモリの要求を低減したオンプレミスのカスタマイズを可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Spatio-temporal forecasting is crucial in transportation, logistics, and supply chain management. However, current methods struggle with large, complex datasets. We propose a dynamic, multi-modal approach that integrates the strengths of traditional forecasting methods and instruction tuning of small language models for time series trend analysis. This approach utilizes a mixture of experts (MoE) architecture with parameter-efficient fine-tuning (PEFT) methods, tailored for consumer hardware to scale up AI solutions in low resource settings while balancing performance and latency tradeoffs. Additionally, our approach leverages related past experiences for similar input time series to efficiently handle both intra-series and inter-series dependencies of non-stationary data with a time-then-space modeling approach, using grouped-query attention, while mitigating the limitations of traditional forecasting techniques in handling distributional shifts. Our approach models predictive uncertainty to improve decision-making. Our framework enables on-premises customization with reduced computational and memory demands, while maintaining inference speed and data privacy/security. Extensive experiments on various real-world datasets demonstrate that our framework provides robust and accurate forecasts, significantly outperforming existing methods.
- Abstract(参考訳): 時空間予測は輸送、物流、サプライチェーン管理において重要である。
しかし、現在の手法は大規模で複雑なデータセットに苦しむ。
本稿では,従来の予測手法の強みと,時系列トレンド解析のための小言語モデルの命令チューニングを融合した動的マルチモーダル手法を提案する。
このアプローチでは、パフォーマンスとレイテンシのトレードオフのバランスを保ちながら、低リソース設定でAIソリューションをスケールアップするために、専門家(MoE)アーキテクチャとパラメータ効率のよい微調整(PEFT)手法を併用する。
さらに,本手法では,従来の予測手法の制約を緩和しつつ,時間領域のモデリング手法を用いて,時系列データと時系列データ間の依存関係を効率的に扱えるように,類似の入力時系列に関する過去の経験を活用している。
我々のアプローチは意思決定を改善するために予測の不確実性をモデル化する。
我々のフレームワークは、推論速度とデータプライバシ/セキュリティを維持しながら、計算とメモリの要求を低減したオンプレミスのカスタマイズを可能にする。
様々な実世界のデータセットに対する大規模な実験により、我々のフレームワークは堅牢で正確な予測を提供し、既存の手法よりもはるかに優れています。
関連論文リスト
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - FlowScope: Enhancing Decision Making by Time Series Forecasting based on Prediction Optimization using HybridFlow Forecast Framework [0.0]
時系列予測は気象学、小売、医療、金融などいくつかの分野において重要である。
本稿では,時系列データを予測するための汎用的で堅牢なプラットフォームであるFlowScopeを提案する。
これにより、企業に対して、インフォームドな意思決定と、パフォーマンスの最大化のための長期的な戦略を最適化することが可能になる。
論文 参考訳(メタデータ) (2024-11-16T06:25:30Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
コンテキスト・イズ・キー (Context is Key) (CiK) は、時系列予測ベンチマークであり、様々な種類のテキストコンテキストと数値データをペアリングする。
我々は,統計モデル,時系列基礎モデル,LLMに基づく予測モデルなど,さまざまなアプローチを評価する。
実験では、文脈情報の導入の重要性を強調し、LLMに基づく予測モデルを用いた場合の驚くべき性能を示すとともに、それらの重要な欠点を明らかにした。
論文 参考訳(メタデータ) (2024-10-24T17:56:08Z) - Reprogramming Foundational Large Language Models(LLMs) for Enterprise Adoption for Spatio-Temporal Forecasting Applications: Unveiling a New Era in Copilot-Guided Cross-Modal Time Series Representation Learning [0.0]
パティオ時間予測は、輸送システム、物流、サプライチェーン管理など、様々な分野において重要な役割を担っている。
本稿では,オープンソースの大規模・小規模言語モデル(LLM,LM)と従来の予測手法を組み合わせたハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2024-08-26T16:11:53Z) - A federated large language model for long-term time series forecasting [4.696083734269233]
長距離時系列予測に適した連合型大言語モデル(LLM)であるFedTimeを提案する。
エッジデバイスやクライアントを別のクラスタに分割するために、K平均クラスタリングを採用しています。
また、チャンネルの独立性やパッチの適用により、ローカルなセマンティック情報をよりよく保存する。
論文 参考訳(メタデータ) (2024-07-30T02:38:27Z) - TimeSieve: Extracting Temporal Dynamics through Information Bottlenecks [31.10683149519954]
本稿では,時系列予測モデルTimeSieveを提案する。
提案手法では、ウェーブレット変換を用いて時系列データを前処理し、マルチスケールの特徴を効果的にキャプチャする。
本研究は,時系列予測における課題に対処するためのアプローチの有効性を検証した。
論文 参考訳(メタデータ) (2024-06-07T15:58:12Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Perceiver-based CDF Modeling for Time Series Forecasting [25.26713741799865]
本稿では,時系列データの累積分布関数(CDF)をモデル化するための新しいアーキテクチャであるPerceiver-CDFを提案する。
提案手法は,マルチモーダル時系列予測に適したコプラに基づくアテンション機構と,知覚アーキテクチャを組み合わせたものである。
単調かつマルチモーダルなベンチマークの実験は、最先端の手法よりも20%改善されていることを一貫して示している。
論文 参考訳(メタデータ) (2023-10-03T01:13:17Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
我々は,長期的エネルギー制約のある分散エッジデバイスにおいて,トレーニングデータを時間とともにランダムに生成するフェデレーションエッジ学習(FEEL)システムを検討する。
限られた通信リソースとレイテンシ要件のため、各イテレーションでローカルトレーニングプロセスに参加するのはデバイスのサブセットのみである。
論文 参考訳(メタデータ) (2023-05-02T07:41:16Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。