Relationship between spinons and magnetic fields in a fractionalized state
- URL: http://arxiv.org/abs/2408.13665v1
- Date: Sat, 24 Aug 2024 20:06:26 GMT
- Title: Relationship between spinons and magnetic fields in a fractionalized state
- Authors: Yu Zhang, Hengdi Zhao, Tristan R. Cao, Rahul Nandkishore, Gang Cao,
- Abstract summary: Application of a magnetic field up to 14 T surprisingly breaks the signature temperature-linearity of the heat capacity of both phases below 150 mK.
Magnetic field readily suppresses the thermal conductivity, and more strongly with decreasing temperature below 4 K.
- Score: 4.655132770772739
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The 4d-electron trimer lattice Ba4Nb1-xRu3+xO12 is believed to feature a universal heavy spinon Fermi surface that underpins both a quantum spin liquid (QSL) and an adjacent heavy-fermion strange metal (HFSM), depending on Nb content; the itinerant spinons as heat carriers render the charge-insulating QSL a much better thermal conductor than the HFSM [1]. Here we report that application of a magnetic field up to 14 T surprisingly breaks the signature temperature-linearity of the heat capacity of both phases below 150 mK, inducing a rapid rise in the heat capacity by as much as 5000%, whereas the AC magnetic susceptibility and the electrical resistivity show little response up to 14 T in the same milli-Kelvin temperature range. Furthermore, the magnetic field readily suppresses the thermal conductivity, and more strongly with decreasing temperature below 4 K by up to 40%. All these complex thermal phenomena indicate a powerful simplifying principle: Application of a magnetic field adversely weakens the itineracy of spinons and eventually destroys it with decreasing temperature, leading to an unprecedented quantum state featuring the astonishing rise in the heat capacity, thus entropy in the most unlikely circumstances of milli-Kelvin temperatures and strong magnetic fields. We present and discuss possible explanations.
Related papers
- Robust room temperature ferromagnetism in an itinerant van der Waals
antiferromagnet [4.586172029546092]
coexistence of antiferromagnetic and ferromagnetic order at room temperature in single-phase van der Waals materials has attracted significant research interest.
A notable phenomenon observed is the evident odd-even layer-number effect at high temperature.
The robust ferromagnetic order observed in even-layer flakes at low temperature could potentially be attributed to spin-polarized defects.
arXiv Detail & Related papers (2023-11-03T06:13:22Z) - An anti-maser for quantum-limited cooling of a microwave cavity [58.720142291102135]
We experimentally demonstrate how to generate a state in condensed matter at moderate cryogenic temperatures.
This state is then used to efficiently remove microwave photons from a cavity.
Such an "anti-maser" device could be extremely beneficial for applications that would normally require cooling to millikelvin temperatures.
arXiv Detail & Related papers (2023-07-24T11:12:29Z) - Imaging magnetism evolution of magnetite to megabar pressure range with
quantum sensors in diamond anvil cell [57.91882523720623]
We develop an in-situ magnetic detection technique at megabar pressures with high sensitivity and sub-microscale spatial resolution.
We observe the macroscopic magnetic transition of Fe3O4 in the megabar pressure range from strong ferromagnetism (alpha-Fe3O4) to weak ferromagnetism (beta-Fe3O4) and finally to non-magnetism (gamma-Fe3O4)
The presented method can potentially investigate the spin-orbital coupling and magnetism-superconductivity competition in magnetic systems.
arXiv Detail & Related papers (2023-06-13T15:19:22Z) - A highly-sensitive broadband superconducting thermoelectric
single-photon detector [62.997667081978825]
A thermoelectric detector (TED) converts a finite temperature difference caused by the absorption of a single photon into an open circuit thermovoltage.
Our TED is able to reveal single-photons of frequency ranging from about 15 GHz to about 150 PHz depending on the chosen design and materials.
arXiv Detail & Related papers (2023-02-06T17:08:36Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
We observe thermal self-oscillations in a monolayer graphene flake coupled to superconducting resonator.
The experimental observations fit well with theoretical model based on thermal instability.
The modelling of the oscillation sidebands provides a method to evaluate electron phonon coupling in disordered graphene sample at low energies.
arXiv Detail & Related papers (2022-05-27T15:38:41Z) - Magnetic field-controlled lattice thermal conductivity in MnBi2Te4 [0.0]
We discover a new way to control the lattice thermal conductivity, generating both a positive and a negative magnetic field dependence.
This finding may open a way to design magnetically controlled heat switches.
arXiv Detail & Related papers (2022-03-15T16:15:10Z) - Fabrication of Surface Ion Traps with Integrated Current Carrying Wires
enabling High Magnetic Field Gradients [0.0]
A major challenge for quantum computers is the scalable simultaneous execution of quantum gates.
One approach to address this in trapped ion quantum computers is the implementation of quantum gates based on static magnetic field gradients and global microwave fields.
We present the fabrication of surface ion traps with integrated copper current carrying wires embedded inside the substrate below the ion trap electrodes.
arXiv Detail & Related papers (2022-02-04T18:52:29Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
We analyze the emission properties of excitons in TMDCs near planar metal interfaces.
We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude.
nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.
arXiv Detail & Related papers (2021-10-11T19:40:24Z) - Measurement of the Low-temperature Loss Tangent of High-resistivity
Silicon with a High Q-factor Superconducting Resonator [58.720142291102135]
We present the direct loss tangent measurement of a high-resist intrinsicivity (100) silicon wafer in the temperature range from 70 mK to 1 K.
The measurement was performed using a technique that takes advantage of a high quality factor superconducting niobium resonator.
arXiv Detail & Related papers (2021-08-19T20:13:07Z) - Low Temperature Relaxation of Donor Bound Electron Spins in $^{28}$Si:P [0.0]
We measure the spin-lattice relaxation of donor bound electrons in ultrapure, isotopically enriched, phosphorus-doped $28$Si:P.
The $28$Si:P spin relaxation rate increases linearly with temperature in the regime below 1 K.
At high magnetic fields, the spin relaxation is dominated by the magnetic field dependent single phonon spin relaxation process.
arXiv Detail & Related papers (2021-04-12T16:54:52Z) - Demonstrating levitation within a microwave cavity [0.0]
We report the first successful experiments with a levitated millimeter-scale neodymium magnet within a centimeter-scale superconducting aluminum coaxial quarter-wave stub cavity.
Resonance spectra are collected via a vector network analyzer (VNA) between temperatures of 5 K and 50 mK revealing movement of the magnet inside of the cavity.
arXiv Detail & Related papers (2021-01-05T01:42:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.