論文の概要: Evaluating Alternative Training Interventions Using Personalized Computational Models of Learning
- arxiv url: http://arxiv.org/abs/2408.13684v1
- Date: Sat, 24 Aug 2024 22:51:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 18:29:37.107818
- Title: Evaluating Alternative Training Interventions Using Personalized Computational Models of Learning
- Title(参考訳): パーソナライズされた学習モデルを用いた代替学習介入の評価
- Authors: Christopher James MacLellan, Kimberly Stowers, Lisa Brady,
- Abstract要約: 最高の学習成果を生み出すための異なるトレーニング介入を評価することは、インストラクショナルデザイナーが直面する主な課題の1つです。
モデルを自動的に特定の個人に調整するアプローチを提案し、パーソナライズされたモデルが、一般的なモデルよりも生徒の行動をより良く予測することを示す。
我々のアプローチでは、過去の人間の発見と一致した予測と、将来の人間の実験で評価される可能性のある検証可能な予測を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evaluating different training interventions to determine which produce the best learning outcomes is one of the main challenges faced by instructional designers. Typically, these designers use A/B experiments to evaluate each intervention; however, it is costly and time consuming to run such studies. To address this issue, we explore how computational models of learning might support designers in reasoning causally about alternative interventions within a fractions tutor. We present an approach for automatically tuning models to specific individuals and show that personalized models make better predictions of students' behavior than generic ones. Next, we conduct simulations to generate counterfactual predictions of performance and learning for two students (high and low performing) in different versions of the fractions tutor. Our approach makes predictions that align with previous human findings, as well as testable predictions that might be evaluated with future human experiments.
- Abstract(参考訳): 最高の学習成果を生み出すための異なるトレーニング介入を評価することは、インストラクショナルデザイナが直面する主な課題の1つである。
通常、これらの設計者はそれぞれの介入を評価するためにA/B実験を使用するが、そのような研究を行うには費用と時間を要する。
この問題に対処するために、我々は、分数チューター内の代替的介入を慎重に推論する上で、学習の計算モデルがどのようにデザイナを支援するかを検討する。
モデルを自動的に特定の個人に調整するアプローチを提案し、パーソナライズされたモデルが、一般的なモデルよりも生徒の行動をより良く予測することを示す。
次に,分数チュータの異なるバージョンにおいて,2人の生徒(ハイ・ロー・ハイ・ロー・パフォーマンス)のパフォーマンスと学習の反実的予測を生成するシミュレーションを行う。
我々のアプローチでは、過去の人間の発見と一致した予測と、将来の人間の実験で評価される可能性のある検証可能な予測を行う。
関連論文リスト
- Is Your Model "MADD"? A Novel Metric to Evaluate Algorithmic Fairness
for Predictive Student Models [0.0]
本稿では,モデルの識別行動を分析するために,モデル絶対密度距離(MADD)を提案する。
オンライン授業における学生の成功を予測するための共通課題に対するアプローチを,いくつかの共通予測分類モデルを用いて評価した。
論文 参考訳(メタデータ) (2023-05-24T16:55:49Z) - Designing Optimal Behavioral Experiments Using Machine Learning [8.759299724881219]
BOEDと機械学習の最近の進歩を活用して、あらゆる種類のモデルに対して最適な実験を見つけるためのチュートリアルを提供する。
マルチアームバンディット意思決定タスクにおける探索と搾取のバランスに関する理論を考察する。
文献でよく用いられる実験的な設計と比較すると、最適な設計は個人の行動に最適なモデルのどれが最適かをより効率的に決定する。
論文 参考訳(メタデータ) (2023-05-12T18:24:30Z) - Predicting student performance using sequence classification with
time-based windows [1.5836913530330787]
本研究では,学生の行動データから得られた逐次的パターンに基づいて,正確な予測モデルを構築することができることを示す。
本稿では,行動データの時間的側面を把握し,モデルの性能予測に与える影響を解析する手法を提案する。
改良されたシーケンス分類手法は,高レベルの精度で生徒のパフォーマンスを予測でき,コース固有のモデルでは90%に達する。
論文 参考訳(メタデータ) (2022-08-16T13:46:39Z) - Prediction of Dilatory Behavior in eLearning: A Comparison of Multiple
Machine Learning Models [0.2963240482383777]
タスクの不合理な遅延である Procrastination は、オンライン学習においてよくある出来事である。
このような予測に焦点を当てた研究はほとんどない。
様々な種類の予測器と様々な手法の予測性能の比較を含む研究は、事実上存在しない。
論文 参考訳(メタデータ) (2022-06-30T07:24:08Z) - Zero-shot meta-learning for small-scale data from human subjects [10.320654885121346]
我々は,サンプル外テストデータに対する限られたトレーニングデータを用いて,新しい予測タスクに迅速に適応するフレームワークを開発した。
本モデルでは, 介入による遅延処理効果を学習し, 設計上はマルチタスク予測を自然に処理できる。
我々のモデルは、より広い人口への小型人間研究の一般化を向上するために重要である。
論文 参考訳(メタデータ) (2022-03-29T17:42:04Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - Predictive machine learning for prescriptive applications: a coupled
training-validating approach [77.34726150561087]
規範的応用のための予測機械学習モデルをトレーニングするための新しい手法を提案する。
このアプローチは、標準的なトレーニング検証テストスキームの検証ステップを微調整することに基づいている。
合成データを用いたいくつかの実験は、決定論的モデルと実モデルの両方において処方料コストを削減できる有望な結果を示した。
論文 参考訳(メタデータ) (2021-10-22T15:03:20Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z) - Predicting Performance for Natural Language Processing Tasks [128.34208911925424]
実験条件を入力として,NLP実験の評価スコアを予測する回帰モデルを構築した。
9つの異なるNLPタスクを実験した結果、予測器は目に見えない言語や異なるモデリングアーキテクチャに対して有意義な予測を生成できることがわかった。
論文 参考訳(メタデータ) (2020-05-02T16:02:18Z) - Facial Feedback for Reinforcement Learning: A Case Study and Offline
Analysis Using the TAMER Framework [51.237191651923666]
訓練者の表情からエージェント学習の可能性について,評価フィードバックとして解釈することで検討した。
設計したCNN-RNNモデルを用いて,学習者に対して表情とコンペティションの使用を指示することで,肯定的および否定的なフィードバックを推定する精度を向上させることができることを示す。
シミュレーション実験の結果,表情に基づく予測フィードバックのみから学習できることが示唆された。
論文 参考訳(メタデータ) (2020-01-23T17:50:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。