The origins of noise in the Zeeman splitting of spin qubits in natural-silicon devices
- URL: http://arxiv.org/abs/2408.13707v1
- Date: Sun, 25 Aug 2024 02:34:47 GMT
- Title: The origins of noise in the Zeeman splitting of spin qubits in natural-silicon devices
- Authors: Juan S. Rojas-Arias, Yohei Kojima, Kenta Takeda, Peter Stano, Takashi Nakajima, Jun Yoneda, Akito Noiri, Takashi Kobayashi, Daniel Loss, Seigo Tarucha,
- Abstract summary: We measure and analyze noise-induced energy-fluctuations of spin qubits defined in quantum dots made of isotopically natural silicon.
We find that the low-frequency noise spectrum is similar across three different devices.
The effects of charge noise are smaller, but not negligible, and are suppressing dependent on the noise cross-correlations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We measure and analyze noise-induced energy-fluctuations of spin qubits defined in quantum dots made of isotopically natural silicon. Combining Ramsey, time-correlation of single-shot measurements, and CPMG experiments, we cover the qubit noise power spectrum over a frequency range of nine orders of magnitude without any gaps. We find that the low-frequency noise spectrum is similar across three different devices suggesting that it is dominated by the hyperfine coupling to nuclei. The effects of charge noise are smaller, but not negligible, and are device dependent as confirmed from the noise cross-correlations. We also observe differences to spectra reported in GaAs {[Phys. Rev. Lett. 118, 177702 (2017), Phys. Rev. Lett. 101, 236803 (2008)]}, which we attribute to the presence of the valley degree of freedom in silicon. Finally, we observe $T_2^*$ to increase upon increasing the external magnetic field, which we speculate is due to the increasing field-gradient of the micromagnet suppressing nuclear spin diffusion.
Related papers
- Long-range interactions revealed by collective spin noise spectra in atomic vapors [0.0]
We report anomalous features in the spin noise spectroscopy (SNS) of a thin cell of a dense vapor of alkali atoms.
At high densities and close to resonance, we observe a dramatic broadening of the spin noise spectra as well as an unexpected extra low-frequency noise component.
arXiv Detail & Related papers (2024-06-28T18:30:43Z) - Magnetic Resonance Frequency Shift Caused by Nonuniform Field and Boundary Relaxation [9.571148539178049]
We investigate the frequency shift under arbitrary nonuniform magnetic field and boundary relaxation.
We find that the frequency shift is mainly determined by $B_z$ distribution.
We propose a new tool for wall interaction research based on the frequency shift's dependency on boundary relaxation.
arXiv Detail & Related papers (2024-04-25T15:16:53Z) - Measuring the environment of a Cs qubit with dynamical decoupling
sequences [0.0]
We report the experimental implementation of dynamical decoupling on a small, non-interacting ensemble of up to 25 optically trapped, neutral Cs atoms.
ACPMG sequence with ten refocusing pulses increases the coherence time of 16.2(9) ms by more than one order of magnitude to 178(2) ms.
Our findings point toward noise spectroscopy of engineered atomic baths through single-atom dynamical decoupling.
arXiv Detail & Related papers (2023-03-13T10:33:33Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Noise-correlation spectrum for a pair of spin qubits in silicon [0.0]
We quantify the degree of noise correlation in a pair of neighbouring silicon spin qubits 100 nm apart.
We reveal strong inter-qubit noise correlation with a correlation strength as large as 0.7 at 1 Hz.
We furthermore find that fluctuations of single-spin precession rates are strongly correlated with exchange noise, giving away their electrical origin.
arXiv Detail & Related papers (2022-08-30T11:10:11Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators:
Symmetry Breaking and Floquet Protection [55.41644538483948]
We study the qubit dephasing caused by the non-Gaussian fluctuators.
We predict a symmetry-breaking effect that is unique to the non-Gaussian noise.
arXiv Detail & Related papers (2022-06-06T18:02:38Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Frequency fluctuations of ferromagnetic resonances at milliKelvin
temperatures [50.591267188664666]
Noise is detrimental to device performance, especially for quantum coherent circuits.
Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on single magnons to superconducting qubits.
Researching the temporal behavior can help to identify the underlying noise sources.
arXiv Detail & Related papers (2021-07-14T08:00:37Z) - Quantum sensitivity limits of nuclear magnetic resonance experiments
searching for new fundamental physics [91.6474995587871]
Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter.
We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise.
arXiv Detail & Related papers (2021-03-10T19:00:02Z) - Relative Acceleration Noise Mitigation for Nanocrystal Matter-wave
Interferometry: Application to Entangling Masses via Quantum Gravity [0.0]
Matter wave interferometers with large momentum transfers will face a universal dephasing due to relative accelerations between the interferometric mass and the apparatus.
Here we propose a solution that works even without actively tracking the relative accelerations: putting both the interfering mass and its associated apparatus in a freely falling capsule.
We show that the former can be reduced below desired values by appropriate pressures and temperatures, while the latter can be fully mitigated in a controlled environment.
arXiv Detail & Related papers (2020-07-29T18:01:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.