Spin contrast, finite temperature, and noise in matter-wave interferometer
- URL: http://arxiv.org/abs/2503.13656v2
- Date: Wed, 19 Mar 2025 09:06:49 GMT
- Title: Spin contrast, finite temperature, and noise in matter-wave interferometer
- Authors: Tian Zhou, Ryan Rizaldy, Martine Schut, Anupam Mazumdar,
- Abstract summary: We will show how finite-temperature corrections and spin-dependent/independent noise will affect the contrast in a matter-wave interferometer.<n>We will consider a Stern-Gerlach type apparatus to create macroscopic quantum superposition.
- Score: 2.35195226981922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we will show how finite-temperature corrections and spin-dependent/independent noise will affect the contrast in a matter-wave interferometer, especially with massive objects and large spatial superposition sizes. Typically, spin is embedded in a nanoparticle as a defect, which can be manipulated by the external magnetic field to create a macroscopic quantum superposition. These massive matter-wave interferometers are the cornerstone for many new fundamental advancements in physics; particularly, macroscopic quantum superposition can use entanglement features to, e.g., test physics beyond the Standard Model, test the equivalence principle, improve quantum sensors, and test the quantum nature of spacetime in a lab. We will consider a Stern-Gerlach type apparatus to create macroscopic quantum superposition in a harmonic oscillator trap, and figure out the spin contrast loss due to linear spin-independent and spin-dependent noise in a single interferometer. We will show that spin contrast loss due to spin-independent noise does not depend on the initial thermal state of the matter wave function. However, spin contrast loss due to spin-dependent fluctuations do depend on the initial thermal occupation of the quantum state. We will keep our discussion general as far as the noise parameters are concerned.
Related papers
- Magnetic noise in macroscopic quantum spatial superposition [0.0]
We will show how random fluctuations in the magnetic field will jitter the paths of a matter-wave interferometer randomly, hence, decohere the quantum superposition.
Such matter-wave interferometers are the cornerstone for many new fundamental advancements in physics.
arXiv Detail & Related papers (2025-04-17T18:00:02Z) - Spin Squeezing of Macroscopic Nuclear Spin Ensembles [44.99833362998488]
Squeezing macroscopic spin ensembles may prove to be a useful technique for fundamental physics experiments.<n>We analyze the squeezing dynamics in the presence of decoherence and finite spin polarization, showing that achieving 7 dB spin squeezing is feasible in several nuclear spin systems.
arXiv Detail & Related papers (2025-02-19T21:16:54Z) - Rotational stability in nanorotor and spin contrast in one-loop interferometry in the Stern-Gerlach setup [2.35195226981922]
This paper will treat nanoparticle rotational dynamics for spin-embedded nanorotors.<n>We will study how the quantum evolution of all the Euler angles leads to a spin coherence loss upon interference.<n>In particular, we show that by imparting rotation along the direction of the magnetic field, we can stabilise the nanorotor's libration mode.
arXiv Detail & Related papers (2024-12-19T19:04:46Z) - Phonon-induced contrast in a matter-wave interferometer [0.7874708385247352]
We study the issue of internal degrees of freedom, specifically phonon fluctuations and contrast reduction.
This work will investigate the contrast reduction caused by spin-magnetic field and diamagnetic interactions at the phonon occupation level.
arXiv Detail & Related papers (2024-04-05T16:42:11Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Quantum sensitivity limits of nuclear magnetic resonance experiments
searching for new fundamental physics [91.6474995587871]
Nuclear magnetic resonance is a promising experimental approach to search for ultra-light axion-like dark matter.
We consider a circuit model of a magnetic resonance experiment and quantify three noise sources: spin-projection noise, thermal noise, and amplifier noise.
arXiv Detail & Related papers (2021-03-10T19:00:02Z) - Towards a quantum interface between spin waves and paramagnetic spin
baths [0.0]
We present a quantum theory describing the interaction between spin waves and paramagnetic spins.
We consider an ensemble of nitrogen-vacancy spins in diamond in the vicinity of an Yttrium-Iron-Garnet thin film.
We show how the back-action of the ensemble results in strong and tuneable modifications of the spin-wave spectrum and propagation properties.
arXiv Detail & Related papers (2020-12-01T14:54:43Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - A room temperature optomechanical squeezer [0.0]
One of the noise sources that currently limits gravitational wave (GW) detectors comes from the quantum nature of the light causing uncertain amplitude and phase.
GW detectors plan to use squeezed light injection to lower this quantum noise.
I focus on using radiation-pressure-mediated optomechanical (OM) interaction to generate squeezed light.
arXiv Detail & Related papers (2020-06-25T11:56:34Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.