論文の概要: GPT-4 Emulates Average-Human Emotional Cognition from a Third-Person Perspective
- arxiv url: http://arxiv.org/abs/2408.13718v1
- Date: Sun, 11 Aug 2024 01:22:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-01 16:52:18.445626
- Title: GPT-4 Emulates Average-Human Emotional Cognition from a Third-Person Perspective
- Title(参考訳): GPT-4は3人称視点から平均的人間感情認知をエミュレートする
- Authors: Ala N. Tak, Jonathan Gratch,
- Abstract要約: まず最初に、脳神経活動のパターンを見つけるために設計された感情誘発刺激を慎重に構築する。
以上の結果から, GPT-4は特に精度が高いことが示唆された。
GPT-4の解釈は,自己評価よりも,他者の感情に対する人間の判断と密接に一致していることがわかった。
- 参考スコア(独自算出の注目度): 1.642094639107215
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper extends recent investigations on the emotional reasoning abilities of Large Language Models (LLMs). Current research on LLMs has not directly evaluated the distinction between how LLMs predict the self-attribution of emotions and the perception of others' emotions. We first look at carefully crafted emotion-evoking stimuli, originally designed to find patterns of brain neural activity representing fine-grained inferred emotional attributions of others. We show that GPT-4 is especially accurate in reasoning about such stimuli. This suggests LLMs agree with humans' attributions of others' emotions in stereotypical scenarios remarkably more than self-attributions of emotions in idiosyncratic situations. To further explore this, our second study utilizes a dataset containing annotations from both the author and a third-person perspective. We find that GPT-4's interpretations align more closely with human judgments about the emotions of others than with self-assessments. Notably, conventional computational models of emotion primarily rely on self-reported ground truth as the gold standard. However, an average observer's standpoint, which LLMs appear to have adopted, might be more relevant for many downstream applications, at least in the absence of individual information and adequate safety considerations.
- Abstract(参考訳): 本稿では,Large Language Models (LLMs) の感情的推論能力に関する最近の研究を拡張した。
LLMの現在の研究は、LLMが感情の自己帰属を予測する方法と他者の感情の知覚とを直接的に評価していない。
まず最初に、神経活動のパターンを見つけるために設計された感情誘発刺激を慎重に作ってみます。
以上の結果から, GPT-4は特に精度が高いことが示唆された。
このことは、LCMは、イディオシントラティックな状況における感情の自己帰属よりも明らかに、ステレオタイプなシナリオにおける人間の他者の感情への帰属と一致することを示唆している。
これをさらに調査するため,著者と第三者の両方からのアノテーションを含むデータセットを用いた第2回研究を行った。
GPT-4の解釈は,自己評価よりも,他者の感情に対する人間の判断と密接に一致していることがわかった。
特に、従来の感情の計算モデルは、主に金の標準として自己報告された真実に依存している。
しかし、LLMが採用したと思われる平均的なオブザーバーの視点は、少なくとも個々の情報や適切な安全上の配慮が欠如している場合、多くの下流アプリケーションにとってより重要かもしれない。
関連論文リスト
- AER-LLM: Ambiguity-aware Emotion Recognition Leveraging Large Language Models [18.482881562645264]
この研究は、あいまいな感情を認識する上でのLarge Language Models(LLM)の可能性を探究する最初のものである。
我々はゼロショットと少数ショットのプロンプトを設計し、過去の対話を曖昧な感情認識のための文脈情報として組み込んだ。
論文 参考訳(メタデータ) (2024-09-26T23:25:21Z) - Think out Loud: Emotion Deducing Explanation in Dialogues [57.90554323226896]
対話における感情推論(Emotion Deducing Explanation in Dialogues)を提案する。
EDENは感情と原因を明確な考え方で認識する。
大規模言語モデル(LLM)が感情や原因をよりよく認識するのに役立ちます。
論文 参考訳(メタデータ) (2024-06-07T08:58:29Z) - Enhancing Emotional Generation Capability of Large Language Models via Emotional Chain-of-Thought [50.13429055093534]
大規模言語モデル(LLM)は様々な感情認識タスクにおいて顕著な性能を示した。
本研究では,感情生成タスクにおけるLLMの性能を高めるための感情連鎖(ECoT)を提案する。
論文 参考訳(メタデータ) (2024-01-12T16:42:10Z) - Language Models (Mostly) Do Not Consider Emotion Triggers When Predicting Emotion [87.18073195745914]
人間の感情が感情の予測において有意であると考えられる特徴とどのように相関するかを検討する。
EmoTriggerを用いて、感情のトリガーを識別する大規模言語モデルの能力を評価する。
分析の結果、感情のトリガーは感情予測モデルにとって健全な特徴ではなく、様々な特徴と感情検出のタスクの間に複雑な相互作用があることが判明した。
論文 参考訳(メタデータ) (2023-11-16T06:20:13Z) - What's Next in Affective Modeling? Large Language Models [3.0902630634005797]
GPT-4は複数の感情タスクでうまく機能する。
感情理論を区別し、感情的な物語を思いつくことができる。
我々は、LLMが感情モデリングにおいて重要な役割を果たすことを示唆している。
論文 参考訳(メタデータ) (2023-10-03T16:39:20Z) - Emotionally Numb or Empathetic? Evaluating How LLMs Feel Using EmotionBench [83.41621219298489]
心理学からの感情評価理論を用いて,Large Language Models (LLMs) の人為的能力を評価する。
我々は、研究の中心となる8つの感情を引き出すのに有効な400以上の状況を含むデータセットを収集した。
我々は世界中の1200人以上の被験者を対象に人間による評価を行った。
論文 参考訳(メタデータ) (2023-08-07T15:18:30Z) - Emotional Intelligence of Large Language Models [9.834823298632374]
大規模言語モデル(LLM)は多くの分野において顕著な能力を示している。
しかし、現実世界の応用にとって重要な人間の感情や価値観との整合性は、体系的に評価されていない。
そこで我々は,感情認識,解釈,理解を含むLLMの感情知能(EI)を評価した。
論文 参考訳(メタデータ) (2023-07-18T07:49:38Z) - Large Language Models Understand and Can be Enhanced by Emotional
Stimuli [53.53886609012119]
我々は、感情的な刺激を理解するために、大規模言語モデルの能力を探究する第一歩を踏み出す。
実験の結果,LLMは感情的知能を把握でき,その性能は感情的刺激によって改善できることがわかった。
EmotionPromptが生成タスクの性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-07-14T00:57:12Z) - Human-Like Intuitive Behavior and Reasoning Biases Emerged in Language
Models -- and Disappeared in GPT-4 [0.0]
大型言語モデル (LLM) は人間の直感に類似した行動を示す。
また、直感的な意思決定の傾向がいかに頑丈かも調べる。
論文 参考訳(メタデータ) (2023-06-13T08:43:13Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
視覚的感情分布学習に先立つ知識を活用するために,身近な円形構造表現を提案する。
具体的には、まず感情圏を構築し、その内にある感情状態を統一する。
提案した感情圏では、各感情分布は3つの属性で定義される感情ベクトルで表される。
論文 参考訳(メタデータ) (2021-06-23T14:53:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。