Estimating quantum amplitudes can be exponentially improved
- URL: http://arxiv.org/abs/2408.13721v2
- Date: Sun, 08 Dec 2024 04:21:21 GMT
- Title: Estimating quantum amplitudes can be exponentially improved
- Authors: Zhong-Xia Shang, Qi Zhao,
- Abstract summary: Estimating quantum amplitude (the overlap between two quantum states) is a fundamental task in quantum computing.<n>We present a novel algorithmic framework for estimating quantum amplitudes by transforming pure states into matrix forms.<n>Our framework achieves the standard quantum limit $epsilon-2$ and the Heisenberg limit $epsilon-1$, respectively.
- Score: 11.282486674587236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating quantum amplitude (the overlap between two quantum states) is a fundamental task in quantum computing and serves as a core subroutine in numerous quantum algorithms. In this work, we present a novel algorithmic framework for estimating quantum amplitudes by transforming pure states into matrix forms and encoding them into non-diagonal blocks of density operators and diagonal blocks of unitary operators. Our framework presents two specific estimation protocols, achieving the standard quantum limit $\epsilon^{-2}$ and the Heisenberg limit $\epsilon^{-1}$, respectively. Whenever one quantum state is prepared by a $\mathit{o}(n)$-depth quantum circuit and the other has a large entanglement under a certain bi-partition, our algorithm can give exponential improvement over the direct Hadamard test and amplitude estimation algorithm for both query complexity and gate complexity. The gate complexity reduction comes from a new technique called channel block encoding. This technique provides a systematical and efficient way to embed the matrix form of a pure state into a density operator.
Related papers
- Quantum Hermitian conjugate and encoding unnormalized matrices [49.494595696663524]
We develop the family of matrix-manipulation algorithms based on the encoding the matrix elements into the probability amplitudes of the pure superposition state of a certain quantum system.
We introduce two extensions to these algorithms which allow (i) to perform Hermitian conjugation of matrices under consideration and (ii) to weaken the restriction to the absolute values of matrix elements unavoidably imposed by the normalization condition for a pure quantum state.
arXiv Detail & Related papers (2025-03-27T08:49:59Z) - Schrödingerization based Quantum Circuits for Maxwell's Equation with time-dependent source terms [24.890270804373824]
This paper explicitly constructs a quantum circuit for Maxwell's equations with perfect electric conductor (PEC) boundary conditions.
We show that quantum algorithms constructed using Schr"odingerisation exhibit acceleration in computational complexity compared to the classical Finite Difference Time Domain (FDTD) format.
arXiv Detail & Related papers (2024-11-17T08:15:37Z) - Entropy-driven entanglement forging [0.0]
We show how entropy-driven entanglement forging can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
Our findings indicate that our method, entropy-driven entanglement forging, can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2024-09-06T16:54:41Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum quench dynamics as a shortcut to adiabaticity [31.114245664719455]
We develop and test a quantum algorithm in which the incorporation of a quench step serves as a remedy to the diverging adiabatic timescale.
Our experiments show that this approach significantly outperforms the adiabatic algorithm.
arXiv Detail & Related papers (2024-05-31T17:07:43Z) - Quantivine: A Visualization Approach for Large-scale Quantum Circuit
Representation and Analysis [31.203764035373677]
We develop Quantivine, an interactive system for exploring and understanding quantum circuits.
A series of novel circuit visualizations are designed to uncover contextual details such as qubit provenance, parallelism, and entanglement.
The effectiveness of Quantivine is demonstrated through two usage scenarios of quantum circuits with up to 100 qubits.
arXiv Detail & Related papers (2023-07-18T04:51:28Z) - Analyzing Prospects for Quantum Advantage in Topological Data Analysis [35.423446067065576]
We analyze and optimize an improved quantum algorithm for topological data analysis.
We show that super-quadratic quantum speedups are only possible when targeting a multiplicative error approximation.
We argue that quantum circuits with tens of billions of Toffoli can solve seemingly classically intractable instances.
arXiv Detail & Related papers (2022-09-27T17:56:15Z) - Improved maximum-likelihood quantum amplitude estimation [0.0]
Quantum estimation is a key subroutine in a number of powerful quantum algorithms, including quantum-enhanced Monte Carlo simulation and quantum machine learning.
In this article, we deepen the analysis of Maximum-likelihood quantum amplitude estimation (MLQAE) to put the algorithm in a more prescriptive form, including scenarios where quantum circuit depth is limited.
We then propose and numerically validate a modification to the algorithm to overcome this problem, bringing the algorithm even closer to being useful as a practical subroutine on near- and mid-term quantum hardware.
arXiv Detail & Related papers (2022-09-07T17:30:37Z) - Ground state preparation and energy estimation on early fault-tolerant
quantum computers via quantum eigenvalue transformation of unitary matrices [3.1952399274829775]
We develop a tool called quantum eigenvalue transformation of unitary matrices with reals (QET-U)
This leads to a simple quantum algorithm that outperforms all previous algorithms with a comparable circuit structure for estimating the ground state energy.
We demonstrate the performance of the algorithm using IBM Qiskit for the transverse field Ising model.
arXiv Detail & Related papers (2022-04-12T17:11:40Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Quantum amplitude damping for solving homogeneous linear differential
equations: A noninterferometric algorithm [0.0]
This work proposes a novel approach by using the Quantum Amplitude Damping operation as a resource, in order to construct an efficient quantum algorithm for solving homogeneous LDEs.
We show that such an open quantum system-inspired circuitry allows for constructing the real exponential terms in the solution in a non-interferometric.
arXiv Detail & Related papers (2021-11-10T11:25:32Z) - Quantum Causal Unravelling [44.356294905844834]
We develop the first efficient method for unravelling the causal structure of the interactions in a multipartite quantum process.
Our algorithms can be used to identify processes that can be characterized efficiently with the technique of quantum process tomography.
arXiv Detail & Related papers (2021-09-27T16:28:06Z) - Detailed Account of Complexity for Implementation of Some Gate-Based
Quantum Algorithms [55.41644538483948]
In particular, some steps of the implementation, as state preparation and readout processes, can surpass the complexity aspects of the algorithm itself.
We present the complexity involved in the full implementation of quantum algorithms for solving linear systems of equations and linear system of differential equations.
arXiv Detail & Related papers (2021-06-23T16:33:33Z) - Quantum Amplitude Amplification Operators [3.8073142980733]
We show the characterization of quantum iterations that would generally construct quantum amplitude amplification algorithms with a quadratic speedup.
We show that an optimal and exact quantum amplitude amplification algorithm corresponds to the Grover algorithm together with a single iteration of QAAO.
We then realize 3-qubit QAAOs with the current quantum technologies via cloud-based quantum computing services, IBMQ and IonQ.
arXiv Detail & Related papers (2021-05-20T07:26:23Z) - A Grand Unification of Quantum Algorithms [0.0]
A number of quantum algorithms were recently tied together by a technique known as the quantum singular value transformation.
This paper provides a tutorial through these developments, first illustrating how quantum signal processing may be generalized to the quantum eigenvalue transform.
We then employ QSVT to construct intuitive quantum algorithms for search, phase estimation, and Hamiltonian simulation.
arXiv Detail & Related papers (2021-05-06T17:46:33Z) - Quantum Amplitude Arithmetic [20.84884678978409]
We propose the notion of quantum amplitude arithmetic (QAA) that intent to evolve the quantum state by performing arithmetic operations on amplitude.
QAA is expected to find applications in a variety of quantum algorithms.
arXiv Detail & Related papers (2020-12-21T00:17:18Z) - Programming a quantum computer with quantum instructions [39.994876450026865]
We use a density matrixiation protocol to execute quantum instructions on quantum data.
A fixed sequence of classically-defined gates performs an operation that uniquely depends on an auxiliary quantum instruction state.
The utilization of quantum instructions obviates the need for costly tomographic state reconstruction and recompilation.
arXiv Detail & Related papers (2020-01-23T22:43:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.