EMG-Based Hand Gesture Recognition through Diverse Domain Feature Enhancement and Machine Learning-Based Approach
- URL: http://arxiv.org/abs/2408.13723v1
- Date: Sun, 25 Aug 2024 04:55:42 GMT
- Title: EMG-Based Hand Gesture Recognition through Diverse Domain Feature Enhancement and Machine Learning-Based Approach
- Authors: Abu Saleh Musa Miah, Najmul Hassan, Md. Maniruzzaman, Nobuyoshi Asai, Jungpil Shin,
- Abstract summary: Surface electromyography (EMG) serves as a pivotal tool in hand gesture recognition and human-computer interaction.
This study presents a novel methodology for classifying hand gestures using EMG signals.
- Score: 1.8796659304823702
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Surface electromyography (EMG) serves as a pivotal tool in hand gesture recognition and human-computer interaction, offering a non-invasive means of signal acquisition. This study presents a novel methodology for classifying hand gestures using EMG signals. To address the challenges associated with feature extraction where, we explored 23 distinct morphological, time domain and frequency domain feature extraction techniques. However, the substantial size of the features may increase the computational complexity issues that can hinder machine learning algorithm performance. We employ an efficient feature selection approach, specifically an extra tree classifier, to mitigate this. The selected potential feature fed into the various machine learning-based classification algorithms where our model achieved 97.43\% accuracy with the KNN algorithm and selected feature. By leveraging a comprehensive feature extraction and selection strategy, our methodology enhances the accuracy and usability of EMG-based hand gesture recognition systems. The higher performance accuracy proves the effectiveness of the proposed model over the existing system. \keywords{EMG signal, machine learning approach, hand gesture recognition.
Related papers
- Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
We demonstrate a hand gesture recognition system that uses signals from capacitive sensors embedded into the etee hand controller.
The controller generates real-time signals from each of the wearer five fingers.
We use a machine learning technique to analyse the time series signals and identify three features that can represent 5 fingers within 500 ms.
arXiv Detail & Related papers (2023-05-12T17:24:02Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Automated Feature Extraction on AsMap for Emotion Classification using
EEG [0.0]
The asymmetry in the different brain regions are captured in a 2-D vector, termed as AsMap from the differential entropy (DE) features of EEG signals.
AsMaps are then used to extract features automatically using Convolutional Neural Network (CNN) model.
Highest classification accuracy of 97.10% is achieved on 3-class classification problem using SEED dataset.
arXiv Detail & Related papers (2022-01-28T11:38:29Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
Speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction.
One of the main challenges in SER is data scarcity.
We propose a transfer learning strategy combined with spectrogram augmentation.
arXiv Detail & Related papers (2021-08-05T10:39:39Z) - Classification of Upper Arm Movements from EEG signals using Machine
Learning with ICA Analysis [0.0]
This paper proposes a unique algorithm for classifying left/right-hand movements by utilizing Multi-layer Perceptron Neural Network.
The intervention of unwanted signals contaminates the EEG signals which influence the performance of the algorithm.
arXiv Detail & Related papers (2021-07-18T18:56:28Z) - Heterogeneous Hand Guise Classification Based on Surface
Electromyographic Signals Using Multichannel Convolutional Neural Network [0.0]
Recent developments in the field of Machine Learning allow us to use EMG signals to teach machines the complex properties of human movements.
Modern machines are capable of detecting numerous human activities and distinguishing among them solely based on the EMG signals produced by those activities.
In this study, a novel classification method has been described employing a multichannel Convolutional Neural Network (CNN) that interprets surface EMG signals by the properties they exhibit in the power domain.
arXiv Detail & Related papers (2021-01-17T17:02:04Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Optimizing Speech Emotion Recognition using Manta-Ray Based Feature
Selection [1.4502611532302039]
We show that concatenation of features, extracted by using different existing feature extraction methods can boost the classification accuracy.
We also perform a novel application of Manta Ray optimization in speech emotion recognition tasks that resulted in a state-of-the-art result.
arXiv Detail & Related papers (2020-09-18T16:09:34Z) - Effect of Analysis Window and Feature Selection on Classification of
Hand Movements Using EMG Signal [0.20999222360659603]
Recently, research on myoelectric control based on pattern recognition (PR) shows promising results with the aid of machine learning classifiers.
By offering multiple class movements and intuitive control, this method has the potential to power an amputated subject to perform everyday life movements.
We show that effective data preprocessing and optimum feature selection helps to improve the classification accuracy of hand movements.
arXiv Detail & Related papers (2020-02-02T19:03:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.