Heterogeneous Hand Guise Classification Based on Surface
Electromyographic Signals Using Multichannel Convolutional Neural Network
- URL: http://arxiv.org/abs/2101.06715v1
- Date: Sun, 17 Jan 2021 17:02:04 GMT
- Title: Heterogeneous Hand Guise Classification Based on Surface
Electromyographic Signals Using Multichannel Convolutional Neural Network
- Authors: Niloy Sikder, Abu Shamim Mohammad Arif, Abdullah-Al Nahid
- Abstract summary: Recent developments in the field of Machine Learning allow us to use EMG signals to teach machines the complex properties of human movements.
Modern machines are capable of detecting numerous human activities and distinguishing among them solely based on the EMG signals produced by those activities.
In this study, a novel classification method has been described employing a multichannel Convolutional Neural Network (CNN) that interprets surface EMG signals by the properties they exhibit in the power domain.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Electromyography (EMG) is a way of measuring the bioelectric activities that
take place inside the muscles. EMG is usually performed to detect abnormalities
within the nerves or muscles of a target area. The recent developments in the
field of Machine Learning allow us to use EMG signals to teach machines the
complex properties of human movements. Modern machines are capable of detecting
numerous human activities and distinguishing among them solely based on the EMG
signals produced by those activities. However, success in accomplishing this
task mostly depends on the learning technique used by the machine to analyze
EMG signals; and even the latest algorithms do not result in flawless
classification. In this study, a novel classification method has been described
employing a multichannel Convolutional Neural Network (CNN) that interprets
surface EMG signals by the properties they exhibit in the power domain. The
proposed method was tested on a well-established EMG dataset, and the result
yields very high classification accuracy. This learning model will help
researchers to develop prosthetic arms capable of detecting various hand
gestures to mimic them afterwards.
Related papers
- emg2qwerty: A Large Dataset with Baselines for Touch Typing using Surface Electromyography [47.160223334501126]
emg2qwerty is a large-scale dataset of non-invasive electromyographic signals recorded at the wrists while touch typing on a QWERTY keyboard.
With 1,135 sessions spanning 108 users and 346 hours of recording, this is the largest such public dataset to date.
We show strong baseline performance on predicting key-presses using sEMG signals alone.
arXiv Detail & Related papers (2024-10-26T05:18:48Z) - EMG-Based Hand Gesture Recognition through Diverse Domain Feature Enhancement and Machine Learning-Based Approach [1.8796659304823702]
Surface electromyography (EMG) serves as a pivotal tool in hand gesture recognition and human-computer interaction.
This study presents a novel methodology for classifying hand gestures using EMG signals.
arXiv Detail & Related papers (2024-08-25T04:55:42Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Upper Limb Movement Recognition utilising EEG and EMG Signals for
Rehabilitative Robotics [0.0]
We propose a novel decision-level multisensor fusion technique for upper limb movement classification.
The system will integrate EEG signals with EMG signals, retrieve effective information from both sources to understand and predict the desire of the user.
arXiv Detail & Related papers (2022-07-18T14:51:23Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
A task-oriented self-supervised learning approach is proposed to train a more effective anomaly detector.
A specific two branch convolutional neural network with larger kernels is designed as the feature extractor.
The effectively designed and trained feature extractor has shown to be able to extract better feature representations from EEGs.
arXiv Detail & Related papers (2022-07-04T13:15:08Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
We develop a novel statistical point process model-called driven temporal point processes (DriPP)
We derive a fast and principled expectation-maximization (EM) algorithm to estimate the parameters of this model.
Results on standard MEG datasets demonstrate that our methodology reveals event-related neural responses.
arXiv Detail & Related papers (2021-12-08T13:07:21Z) - SVM and ANN based Classification of EMG signals by using PCA and LDA [0.0]
Myoelectric signals (MES) are generated in the muscles of the human body as unidimensional patterns.
Support Vector Machines (SVM) is a technique whose primary function is to identify an n-dimensional hyperplane to separate a set of input feature points into different classes.
arXiv Detail & Related papers (2021-10-22T06:44:08Z) - Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle
Activity for Enhanced Myoelectric Control of Hand Prostheses [78.120734120667]
We introduce a novel method, based on a long short-term memory (LSTM) network, to continuously map forearm EMG activity onto hand kinematics.
Ours is the first reported work on the prediction of hand kinematics that uses this challenging dataset.
Our results suggest that the presented method is suitable for the generation of control signals for the independent and proportional actuation of the multiple DOFs of state-of-the-art hand prostheses.
arXiv Detail & Related papers (2021-04-29T00:11:32Z) - sEMG Gesture Recognition with a Simple Model of Attention [0.0]
We present our research in surface electromyography (sEMG) signal classification.
Our novel attention-based model achieves benchmark leading results on multiple industry-standard datasets.
Our results indicate that sEMG represents a promising avenue for future machine learning research.
arXiv Detail & Related papers (2020-06-05T19:28:16Z) - Effect of Analysis Window and Feature Selection on Classification of
Hand Movements Using EMG Signal [0.20999222360659603]
Recently, research on myoelectric control based on pattern recognition (PR) shows promising results with the aid of machine learning classifiers.
By offering multiple class movements and intuitive control, this method has the potential to power an amputated subject to perform everyday life movements.
We show that effective data preprocessing and optimum feature selection helps to improve the classification accuracy of hand movements.
arXiv Detail & Related papers (2020-02-02T19:03:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.