TripleMixer: A 3D Point Cloud Denoising Model for Adverse Weather
- URL: http://arxiv.org/abs/2408.13802v1
- Date: Sun, 25 Aug 2024 10:45:52 GMT
- Title: TripleMixer: A 3D Point Cloud Denoising Model for Adverse Weather
- Authors: Xiongwei Zhao, Congcong Wen, Yang Wang, Haojie Bai, Wenhao Dou,
- Abstract summary: Real-world adverse weather conditions, such as rain, fog, and snow, introduce significant noise and interference.
Existing datasets often suffer from limited weather diversity and small dataset sizes.
We propose a novel point cloud denoising model, TripleMixer, comprising three mixer layers.
- Score: 6.752848431431841
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: LiDAR sensors are crucial for providing high-resolution 3D point cloud data in autonomous driving systems, enabling precise environmental perception. However, real-world adverse weather conditions, such as rain, fog, and snow, introduce significant noise and interference, degrading the reliability of LiDAR data and the performance of downstream tasks like semantic segmentation. Existing datasets often suffer from limited weather diversity and small dataset sizes, which restrict their effectiveness in training models. Additionally, current deep learning denoising methods, while effective in certain scenarios, often lack interpretability, complicating the ability to understand and validate their decision-making processes. To overcome these limitations, we introduce two large-scale datasets, Weather-KITTI and Weather-NuScenes, which cover three common adverse weather conditions: rain, fog, and snow. These datasets retain the original LiDAR acquisition information and provide point-level semantic labels for rain, fog, and snow. Furthermore, we propose a novel point cloud denoising model, TripleMixer, comprising three mixer layers: the Geometry Mixer Layer, the Frequency Mixer Layer, and the Channel Mixer Layer. These layers are designed to capture geometric spatial information, extract multi-scale frequency information, and enhance the multi-channel feature information of point clouds, respectively. Experiments conducted on the WADS dataset in real-world scenarios, as well as on our proposed Weather-KITTI and Weather-NuScenes datasets, demonstrate that our model achieves state-of-the-art denoising performance. Additionally, our experiments show that integrating the denoising model into existing segmentation frameworks enhances the performance of downstream tasks.The datasets and code will be made publicly available at https://github.com/Grandzxw/TripleMixer.
Related papers
- SemiDDM-Weather: A Semi-supervised Learning Framework for All-in-one Adverse Weather Removal [57.52777076116241]
Adverse weather removal aims to restore clear vision under adverse weather conditions.
This paper presents a pioneering semi-supervised all-in-one adverse weather removal framework built on the teacher-student network.
arXiv Detail & Related papers (2024-09-29T12:12:22Z) - Creating and Leveraging a Synthetic Dataset of Cloud Optical Thickness Measures for Cloud Detection in MSI [3.4764766275808583]
Cloud formations often obscure optical satellite-based monitoring of the Earth's surface.
We propose a novel synthetic dataset for cloud optical thickness estimation.
We leverage for obtaining reliable and versatile cloud masks on real data.
arXiv Detail & Related papers (2023-11-23T14:28:28Z) - LiDAR Data Synthesis with Denoising Diffusion Probabilistic Models [1.1965844936801797]
Generative modeling of 3D LiDAR data is an emerging task with promising applications for autonomous mobile robots.
We present R2DM, a novel generative model for LiDAR data that can generate diverse and high-fidelity 3D scene point clouds.
Our method is built upon denoising diffusion probabilistic models (DDPMs), which have shown impressive results among generative model frameworks.
arXiv Detail & Related papers (2023-09-17T12:26:57Z) - Realistic Noise Synthesis with Diffusion Models [68.48859665320828]
Deep image denoising models often rely on large amount of training data for the high quality performance.
We propose a novel method that synthesizes realistic noise using diffusion models, namely Realistic Noise Synthesize Diffusor (RNSD)
RNSD can incorporate guided multiscale content, such as more realistic noise with spatial correlations can be generated at multiple frequencies.
arXiv Detail & Related papers (2023-05-23T12:56:01Z) - LiDAR Snowfall Simulation for Robust 3D Object Detection [116.10039516404743]
We propose a physically based method to simulate the effect of snowfall on real clear-weather LiDAR point clouds.
Our method samples snow particles in 2D space for each LiDAR line and uses the induced geometry to modify the measurement for each LiDAR beam.
We use our simulation to generate partially synthetic snowy LiDAR data and leverage these data for training 3D object detection models that are robust to snowfall.
arXiv Detail & Related papers (2022-03-28T21:48:26Z) - Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in
Adverse Weather [92.84066576636914]
This work addresses the challenging task of LiDAR-based 3D object detection in foggy weather.
We tackle this problem by simulating physically accurate fog into clear-weather scenes.
We are the first to provide strong 3D object detection baselines on the Seeing Through Fog dataset.
arXiv Detail & Related papers (2021-08-11T14:37:54Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Scalable Scene Flow from Point Clouds in the Real World [30.437100097997245]
We introduce a new large scale benchmark for scene flow based on the Open dataset.
We show how previous works were bounded based on the amount of real LiDAR data available.
We introduce the model architecture FastFlow3D that provides real time inference on the full point cloud.
arXiv Detail & Related papers (2021-03-01T20:56:05Z) - Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation
and Spatial Supervision [68.35777836993212]
We propose a Pseudo-LiDAR point cloud network to generate temporally and spatially high-quality point cloud sequences.
By exploiting the scene flow between point clouds, the proposed network is able to learn a more accurate representation of the 3D spatial motion relationship.
arXiv Detail & Related papers (2020-06-20T03:11:04Z) - A Nearest Neighbor Network to Extract Digital Terrain Models from 3D
Point Clouds [1.6249267147413524]
We present an algorithm that operates on 3D-point clouds and estimates the underlying DTM for the scene using an end-to-end approach.
Our model learns neighborhood information and seamlessly integrates this with point-wise and block-wise global features.
arXiv Detail & Related papers (2020-05-21T15:54:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.