論文の概要: Towards Reliable Medical Question Answering: Techniques and Challenges in Mitigating Hallucinations in Language Models
- arxiv url: http://arxiv.org/abs/2408.13808v1
- Date: Sun, 25 Aug 2024 11:09:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 17:49:53.839868
- Title: Towards Reliable Medical Question Answering: Techniques and Challenges in Mitigating Hallucinations in Language Models
- Title(参考訳): 言語モデルにおける幻覚の緩和技術と課題
- Authors: Duy Khoa Pham, Bao Quoc Vo,
- Abstract要約: 本稿では,知識ベースタスク,特に医療領域における幻覚を緩和するための既存の手法のスコーピング研究を行う。
この論文で取り上げられた主要な手法は、検索・拡張生成(RAG)ベースの技術、反復的なフィードバックループ、教師付き微調整、迅速なエンジニアリングである。
これらのテクニックは、一般的な文脈では有望だが、最新の専門知識と厳格な医療ガイドラインの厳格な遵守に対するユニークな要求のために、医療領域のさらなる適応と最適化を必要としている。
- 参考スコア(独自算出の注目度): 1.03590082373586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of large language models (LLMs) has significantly impacted various domains, including healthcare and biomedicine. However, the phenomenon of hallucination, where LLMs generate outputs that deviate from factual accuracy or context, poses a critical challenge, especially in high-stakes domains. This paper conducts a scoping study of existing techniques for mitigating hallucinations in knowledge-based task in general and especially for medical domains. Key methods covered in the paper include Retrieval-Augmented Generation (RAG)-based techniques, iterative feedback loops, supervised fine-tuning, and prompt engineering. These techniques, while promising in general contexts, require further adaptation and optimization for the medical domain due to its unique demands for up-to-date, specialized knowledge and strict adherence to medical guidelines. Addressing these challenges is crucial for developing trustworthy AI systems that enhance clinical decision-making and patient safety as well as accuracy of biomedical scientific research.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な進歩は、医療やバイオメディシンを含む様々な領域に大きな影響を与えている。
しかし、LLMが事実の正確性や文脈から逸脱する出力を生成する幻覚現象は、特に高い領域において重要な課題を引き起こす。
本稿では,知識ベースタスク,特に医療領域における幻覚を緩和するための既存の手法のスコーピング研究を行う。
この論文で取り上げられた主要な手法は、検索・拡張生成(RAG)ベースの技術、反復的なフィードバックループ、教師付き微調整、迅速なエンジニアリングである。
これらのテクニックは、一般的な文脈では有望だが、最新の専門知識と厳格な医療ガイドラインの厳格な遵守に対するユニークな要求のために、医療領域のさらなる適応と最適化を必要としている。
これらの課題に対処することは、臨床意思決定と患者の安全性を高めるとともに、バイオメディカル科学研究の正確性を高める信頼できるAIシステムを開発するために不可欠である。
関連論文リスト
- Knowledge Graph-Driven Retrieval-Augmented Generation: Integrating Deepseek-R1 with Weaviate for Advanced Chatbot Applications [45.935798913942904]
構造化バイオメディカル知識と大規模言語モデル(LLM)を組み合わせた革新的なフレームワークを提案する。
本システムでは,年齢関連黄斑変性(AMD)に関する医学的要約から因果関係を同定・精査し,詳細な知識グラフを作成する。
ベクトルベース検索と局所展開言語モデルを用いて,臨床証拠を直接参照して,文脈的に関連性があり,検証可能な応答を生成する。
論文 参考訳(メタデータ) (2025-02-16T12:52:28Z) - From large language models to multimodal AI: A scoping review on the potential of generative AI in medicine [40.23383597339471]
マルチモーダルAIは、イメージング、テキスト、構造化データを含む多様なデータモダリティを単一のモデルに統合することができる。
このスコーピングレビューは、マルチモーダルAIの進化を探求し、その方法、アプリケーション、データセット、臨床環境での評価を強調している。
診断支援,医療報告生成,薬物発見,会話型AIの革新を推進し,一過性のアプローチからマルチモーダルアプローチへのシフトを示唆した。
論文 参考訳(メタデータ) (2025-02-13T11:57:51Z) - A Review on Scientific Knowledge Extraction using Large Language Models in Biomedical Sciences [1.8308043661908204]
本稿では,生物医学領域における大規模言語モデル(LLM)の最先端応用について概説する。
LLMは、幻覚、文脈理解、一般化する能力など、大きな可能性を秘めているが、大きな課題が残っている。
我々は、医療文献へのアクセスを改善し、医療における有意義な発見を促進することを目的としている。
論文 参考訳(メタデータ) (2024-12-04T18:26:13Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - Toward Large Language Models as a Therapeutic Tool: Comparing Prompting Techniques to Improve GPT-Delivered Problem-Solving Therapy [6.952909762512736]
そこで本研究では,大規模言語モデル (LLM) を指導するためのプロンプトエンジニアリングの効果について検討する。
本稿では,プロンプトエンジニアリング手法を適切に利用することにより,プロトタイズされた治療を提供するモデルの能力を向上できることを実証する。
論文 参考訳(メタデータ) (2024-08-27T17:25:16Z) - A Survey on Medical Large Language Models: Technology, Application, Trustworthiness, and Future Directions [23.36640449085249]
医学大言語モデル(Med-LLMs)の最近の進歩を辿る。
The wide-ranging application of Med-LLMs are investigated across various health domain。
公平性、説明責任、プライバシー、堅牢性を保証する上での課題について議論する。
論文 参考訳(メタデータ) (2024-06-06T03:15:13Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
大規模言語モデル(LLM)は、質問応答(QA)タスクを含む生成的および知識集約的なタスクを約束している。
本稿では,広範に採用されているLCMとデータセットを用いた医療再生QAシステムにおける幻覚現象を解析する。
論文 参考訳(メタデータ) (2023-10-10T03:05:44Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。