Few-Shot Histopathology Image Classification: Evaluating State-of-the-Art Methods and Unveiling Performance Insights
- URL: http://arxiv.org/abs/2408.13816v1
- Date: Sun, 25 Aug 2024 12:17:05 GMT
- Title: Few-Shot Histopathology Image Classification: Evaluating State-of-the-Art Methods and Unveiling Performance Insights
- Authors: Ardhendu Sekhar, Ravi Kant Gupta, Amit Sethi,
- Abstract summary: We have considered four histopathology datasets for few-shot histopathology image classification.
We have evaluated 5-way 1-shot, 5-way 5-shot and 5-way 10-shot scenarios with a set of state-of-the-art classification techniques.
The best methods have surpassed an accuracy of 70%, 80% and 85% in the cases of 5-way 1-shot, 5-way 5-shot and 5-way 10-shot cases, respectively.
- Score: 3.0830445241647313
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a study on few-shot classification in the context of histopathology images. While few-shot learning has been studied for natural image classification, its application to histopathology is relatively unexplored. Given the scarcity of labeled data in medical imaging and the inherent challenges posed by diverse tissue types and data preparation techniques, this research evaluates the performance of state-of-the-art few-shot learning methods for various scenarios on histology data. We have considered four histopathology datasets for few-shot histopathology image classification and have evaluated 5-way 1-shot, 5-way 5-shot and 5-way 10-shot scenarios with a set of state-of-the-art classification techniques. The best methods have surpassed an accuracy of 70%, 80% and 85% in the cases of 5-way 1-shot, 5-way 5-shot and 5-way 10-shot cases, respectively. We found that for histology images popular meta-learning approaches is at par with standard fine-tuning and regularization methods. Our experiments underscore the challenges of working with images from different domains and underscore the significance of unbiased and focused evaluations in advancing computer vision techniques for specialized domains, such as histology images.
Related papers
- Cross-Domain Evaluation of Few-Shot Classification Models: Natural Images vs. Histopathological Images [2.364022147677265]
We first train several few-shot classification models on natural images and evaluate their performance on histopathology images.
We incorporated four histopathology datasets and one natural images dataset and assessed performance across 5-way 1-shot, 5-way 5-shot, and 5-way 10-shot scenarios.
arXiv Detail & Related papers (2024-10-11T18:25:52Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Towards a Visual-Language Foundation Model for Computational Pathology [5.72536252929528]
We introduce CONtrastive learning from Captions for Histopathology (CONCH)
CONCH is a visual-language foundation model developed using diverse sources of histopathology images, biomedical text, and task-agnostic pretraining.
It is evaluated on a suite of 13 diverse benchmarks, achieving state-of-the-art performance on histology image classification, segmentation, captioning, text-to-image and image-to-text retrieval.
arXiv Detail & Related papers (2023-07-24T16:13:43Z) - Cross-modulated Few-shot Image Generation for Colorectal Tissue
Classification [58.147396879490124]
Our few-shot generation method, named XM-GAN, takes one base and a pair of reference tissue images as input and generates high-quality yet diverse images.
To the best of our knowledge, we are the first to investigate few-shot generation in colorectal tissue images.
arXiv Detail & Related papers (2023-04-04T17:50:30Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - Few-Shot Meta Learning for Recognizing Facial Phenotypes of Genetic
Disorders [55.41644538483948]
Automated classification and similarity retrieval aid physicians in decision-making to diagnose possible genetic conditions as early as possible.
Previous work has addressed the problem as a classification problem and used deep learning methods.
In this study, we used a facial recognition model trained on a large corpus of healthy individuals as a pre-task and transferred it to facial phenotype recognition.
arXiv Detail & Related papers (2022-10-23T11:52:57Z) - FHIST: A Benchmark for Few-shot Classification of Histological Images [20.182417148565147]
Few-shot learning has attracted wide interest in image classification, but almost all the current public benchmarks are focused on natural images.
This paper introduces a highly diversified public benchmark, gathered from various public datasets, for few-shot histology data classification.
We evaluate the performances of state-of-the-art few-shot learning methods on our benchmark, and observe that simple fine-tuning and regularization methods achieve better results than the popular meta-learning and episodic-training paradigm.
arXiv Detail & Related papers (2022-05-31T20:03:40Z) - Medical Knowledge-Guided Deep Learning for Imbalanced Medical Image
Classification [3.9745217005532183]
We propose a medical-knowledge-guided one-class classification approach to boost the model's performance.
We design a deep learning-based one-class classification pipeline for imbalanced image classification.
We show superior model performance when compared to six state-of-the-art methods.
arXiv Detail & Related papers (2021-11-20T16:14:19Z) - Few-Shot Learning with Part Discovery and Augmentation from Unlabeled
Images [79.34600869202373]
We show that inductive bias can be learned from a flat collection of unlabeled images, and instantiated as transferable representations among seen and unseen classes.
Specifically, we propose a novel part-based self-supervised representation learning scheme to learn transferable representations.
Our method yields impressive results, outperforming the previous best unsupervised methods by 7.74% and 9.24%.
arXiv Detail & Related papers (2021-05-25T12:22:11Z) - Objective Diagnosis for Histopathological Images Based on Machine
Learning Techniques: Classical Approaches and New Trends [0.33554367023486936]
Histopathology images are captured by a microscope to locate, examine, and classify many diseases.
Analysis of histopathology images is a prolific and relevant research area supporting disease diagnosis.
An extensive review of conventional and deep learning techniques which have been applied in histological image analyses is presented.
arXiv Detail & Related papers (2020-11-10T07:31:05Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.