Cross-Domain Evaluation of Few-Shot Classification Models: Natural Images vs. Histopathological Images
- URL: http://arxiv.org/abs/2410.09176v1
- Date: Fri, 11 Oct 2024 18:25:52 GMT
- Title: Cross-Domain Evaluation of Few-Shot Classification Models: Natural Images vs. Histopathological Images
- Authors: Ardhendu Sekhar, Aditya Bhattacharya, Vinayak Goyal, Vrinda Goel, Aditya Bhangale, Ravi Kant Gupta, Amit Sethi,
- Abstract summary: We first train several few-shot classification models on natural images and evaluate their performance on histopathology images.
We incorporated four histopathology datasets and one natural images dataset and assessed performance across 5-way 1-shot, 5-way 5-shot, and 5-way 10-shot scenarios.
- Score: 2.364022147677265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we investigate the performance of few-shot classification models across different domains, specifically natural images and histopathological images. We first train several few-shot classification models on natural images and evaluate their performance on histopathological images. Subsequently, we train the same models on histopathological images and compare their performance. We incorporated four histopathology datasets and one natural images dataset and assessed performance across 5-way 1-shot, 5-way 5-shot, and 5-way 10-shot scenarios using a selection of state-of-the-art classification techniques. Our experimental results reveal insights into the transferability and generalization capabilities of few-shot classification models between diverse image domains. We analyze the strengths and limitations of these models in adapting to new domains and provide recommendations for optimizing their performance in cross-domain scenarios. This research contributes to advancing our understanding of few-shot learning in the context of image classification across diverse domains.
Related papers
- Unleashing the Potential of Synthetic Images: A Study on Histopathology Image Classification [0.12499537119440242]
Histopathology image classification is crucial for the accurate identification and diagnosis of various diseases.
We show that synthetic images can effectively augment existing datasets, ultimately improving the performance of the downstream histopathology image classification task.
arXiv Detail & Related papers (2024-09-24T12:02:55Z) - Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities [0.0]
This paper investigates the intricacies of using pretrained deep convolutional neural networks with transfer learning across diverse medical imaging datasets.
It shows that the use of pretrained models as fixed feature extractors yields poor performance irrespective of the datasets.
It is also found that deeper and more complex architectures did not necessarily result in the best performance.
arXiv Detail & Related papers (2024-08-30T04:51:19Z) - Few-Shot Histopathology Image Classification: Evaluating State-of-the-Art Methods and Unveiling Performance Insights [3.0830445241647313]
We have considered four histopathology datasets for few-shot histopathology image classification.
We have evaluated 5-way 1-shot, 5-way 5-shot and 5-way 10-shot scenarios with a set of state-of-the-art classification techniques.
The best methods have surpassed an accuracy of 70%, 80% and 85% in the cases of 5-way 1-shot, 5-way 5-shot and 5-way 10-shot cases, respectively.
arXiv Detail & Related papers (2024-08-25T12:17:05Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Glioma subtype classification from histopathological images using
in-domain and out-of-domain transfer learning: An experimental study [9.161480191416551]
We compare various transfer learning strategies and deep learning architectures for computer-aided classification of adult-type diffuse gliomas.
A semi-supervised learning approach is proposed, where the fine-tuned models are utilized to predict the labels of unannotated regions of the whole slide images.
The models are subsequently retrained using the ground-truth labels and weak labels determined in the previous step, providing superior performance in comparison to standard in-domain transfer learning.
arXiv Detail & Related papers (2023-09-29T13:22:17Z) - Cross-modulated Few-shot Image Generation for Colorectal Tissue
Classification [58.147396879490124]
Our few-shot generation method, named XM-GAN, takes one base and a pair of reference tissue images as input and generates high-quality yet diverse images.
To the best of our knowledge, we are the first to investigate few-shot generation in colorectal tissue images.
arXiv Detail & Related papers (2023-04-04T17:50:30Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - A domain adaptive deep learning solution for scanpath prediction of
paintings [66.46953851227454]
This paper focuses on the eye-movement analysis of viewers during the visual experience of a certain number of paintings.
We introduce a new approach to predicting human visual attention, which impacts several cognitive functions for humans.
The proposed new architecture ingests images and returns scanpaths, a sequence of points featuring a high likelihood of catching viewers' attention.
arXiv Detail & Related papers (2022-09-22T22:27:08Z) - FHIST: A Benchmark for Few-shot Classification of Histological Images [20.182417148565147]
Few-shot learning has attracted wide interest in image classification, but almost all the current public benchmarks are focused on natural images.
This paper introduces a highly diversified public benchmark, gathered from various public datasets, for few-shot histology data classification.
We evaluate the performances of state-of-the-art few-shot learning methods on our benchmark, and observe that simple fine-tuning and regularization methods achieve better results than the popular meta-learning and episodic-training paradigm.
arXiv Detail & Related papers (2022-05-31T20:03:40Z) - Modeling Category-Selective Cortical Regions with Topographic
Variational Autoencoders [72.15087604017441]
Category-selectivity describes the observation that certain spatially localized areas of the cerebral cortex tend to respond robustly and selectively to stimuli from specific limited categories.
We leverage the newly introduced Topographic Variational Autoencoder to model of the emergence of such localized category-selectivity in an unsupervised manner.
We show preliminary results suggesting that our model yields a nested spatial hierarchy of increasingly abstract categories, analogous to observations from the human ventral temporal cortex.
arXiv Detail & Related papers (2021-10-25T11:37:41Z) - Cross-Domain Few-Shot Classification via Learned Feature-Wise
Transformation [109.89213619785676]
Few-shot classification aims to recognize novel categories with only few labeled images in each class.
Existing metric-based few-shot classification algorithms predict categories by comparing the feature embeddings of query images with those from a few labeled images.
While promising performance has been demonstrated, these methods often fail to generalize to unseen domains.
arXiv Detail & Related papers (2020-01-23T18:55:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.