論文の概要: A Low-dose CT Reconstruction Network Based on TV-regularized OSEM Algorithm
- arxiv url: http://arxiv.org/abs/2408.13832v1
- Date: Sun, 25 Aug 2024 13:31:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 17:40:08.930481
- Title: A Low-dose CT Reconstruction Network Based on TV-regularized OSEM Algorithm
- Title(参考訳): テレビ規則化OSEMアルゴリズムに基づく低線量CT再構成ネットワーク
- Authors: Ran An, Yinghui Zhang, Xi Chen, Lemeng Li, Ke Chen, Hongwei Li,
- Abstract要約: 低用量CT(LDCT)は人体に対する潜在的な害を軽減する上で大きな利点がある。
予測 (EM) アルゴリズムを用いることで, LDCT の再構成精度を向上させるために, 統計的先行値と人工先行値を組み合わせることができる。
本稿では,EMアルゴリズムのM'-stepにTV正規化を組み込むことにより,効果的かつ効率的な正規化を実現することを提案する。
- 参考スコア(独自算出の注目度): 10.204918070701211
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-dose computed tomography (LDCT) offers significant advantages in reducing the potential harm to human bodies. However, reducing the X-ray dose in CT scanning often leads to severe noise and artifacts in the reconstructed images, which might adversely affect diagnosis. By utilizing the expectation maximization (EM) algorithm, statistical priors could be combined with artificial priors to improve LDCT reconstruction quality. However, conventional EM-based regularization methods adopt an alternating solving strategy, i.e. full reconstruction followed by image-regularization, resulting in over-smoothing and slow convergence. In this paper, we propose to integrate TV regularization into the ``M''-step of the EM algorithm, thus achieving effective and efficient regularization. Besides, by employing the Chambolle-Pock (CP) algorithm and the ordered subset (OS) strategy, we propose the OSEM-CP algorithm for LDCT reconstruction, in which both reconstruction and regularization are conducted view-by-view. Furthermore, by unrolling OSEM-CP, we propose an end-to-end reconstruction neural network (NN), named OSEM-CPNN, with remarkable performance and efficiency that achieves high-quality reconstructions in just one full-view iteration. Experiments on different models and datasets demonstrate our methods' outstanding performance compared to traditional and state-of-the-art deep-learning methods.
- Abstract(参考訳): 低用量CT(LDCT)は人体に対する潜在的な害を軽減する上で大きな利点がある。
しかし、CTスキャンにおけるX線量の減少は、しばしば再建された画像の厳しいノイズやアーティファクトを引き起こし、診断に悪影響を及ぼす可能性がある。
予測最大化 (EM) アルゴリズムを用いることで, LDCT の再構成精度を向上させるために, 統計的先行値と人工先行値を組み合わせることができる。
しかし、従来のEMベースの正規化手法では、完全な再構成と画像の正規化が交互に行われ、過度な平滑化と緩やかな収束をもたらす。
本稿では,EMアルゴリズムの ``M'' ステップにテレビの正則化を組み込むことにより,効果的かつ効率的な正則化を実現することを提案する。
さらに,Chambolle-Pock (CP) アルゴリズムと順序付きサブセット (OS) 戦略を用いて,再構成と正規化の両方をビュー・バイ・ビューで行うLDCT再構成のためのOSEM-CPアルゴリズムを提案する。
さらに,OSEM-CPの展開により,OSEM-CPNNというエンド・ツー・エンドの再構成ニューラルネットワークを提案する。
異なるモデルとデータセットの実験は、従来の最先端のディープラーニング手法と比較して、我々の手法の卓越した性能を示している。
関連論文リスト
- AC-IND: Sparse CT reconstruction based on attenuation coefficient estimation and implicit neural distribution [12.503822675024054]
CTは産業用非破壊検査や診断において重要な役割を担っている。
スパースビューCT再構成は,少数のプロジェクションのみを使用しながら,高品質なCT像を再構成することを目的としている。
本稿では,減衰係数推定と入射ニューラル分布に基づく自己教師型手法であるAC-INDを紹介する。
論文 参考訳(メタデータ) (2024-09-11T10:34:41Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - Solving Low-Dose CT Reconstruction via GAN with Local Coherence [2.325977856241404]
本稿では,局所コヒーレンスを向上したGANを用いた新しい手法を提案する。
提案手法は, 近接画像の局所的コヒーレンスを光学的流れにより捕捉し, 構築した画像の精度と安定性を著しく向上させる。
論文 参考訳(メタデータ) (2023-09-24T08:55:42Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Computed Tomography Reconstruction using Generative Energy-Based Priors [13.634603375405744]
我々は、基準CTデータに基づいて、その可能性の最大化により、大域的受容場を持つパラメトリック正則化器を学習する。
正規化器を限られた角度と少数のCT再構成問題に適用し、従来の再構成アルゴリズムよりも大きなマージンで性能を向上する。
論文 参考訳(メタデータ) (2022-03-23T18:26:23Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Self-Supervised Training For Low Dose CT Reconstruction [0.0]
本研究は,低線量シノグラムを自身のトレーニングターゲットとして用いるためのトレーニングスキームを定義する。
ノイズが要素的に独立な射影領域に自己超越原理を適用する。
提案手法は,従来手法と圧縮方式の両方において,反復的再構成法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-10-25T22:02:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。