論文の概要: Safe Policy Exploration Improvement via Subgoals
- arxiv url: http://arxiv.org/abs/2408.13881v1
- Date: Sun, 25 Aug 2024 16:12:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 15:42:00.357112
- Title: Safe Policy Exploration Improvement via Subgoals
- Title(参考訳): サブゴールによる安全政策探索の改善
- Authors: Brian Angulo, Gregory Gorbov, Aleksandr Panov, Konstantin Yakovlev,
- Abstract要約: 強化学習(Reinforcement learning)は、自律ナビゲーションにおいて広く使われているアプローチであり、様々なタスクやロボットのセットアップの可能性を示している。
このようなセットアップでパフォーマンスが低かった理由の1つは、安全制約を尊重する必要性がRLエージェントの探索能力を低下させることである。
本稿では,初期問題を中間目標を介し,より小さなサブプロブレムに分解する新しい学習可能アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 44.07721205323709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning is a widely used approach to autonomous navigation, showing potential in various tasks and robotic setups. Still, it often struggles to reach distant goals when safety constraints are imposed (e.g., the wheeled robot is prohibited from moving close to the obstacles). One of the main reasons for poor performance in such setups, which is common in practice, is that the need to respect the safety constraints degrades the exploration capabilities of an RL agent. To this end, we introduce a novel learnable algorithm that is based on decomposing the initial problem into smaller sub-problems via intermediate goals, on the one hand, and respects the limit of the cumulative safety constraints, on the other hand -- SPEIS(Safe Policy Exploration Improvement via Subgoals). It comprises the two coupled policies trained end-to-end: subgoal and safe. The subgoal policy is trained to generate the subgoal based on the transitions from the buffer of the safe (main) policy that helps the safe policy to reach distant goals. Simultaneously, the safe policy maximizes its rewards while attempting not to violate the limit of the cumulative safety constraints, thus providing a certain level of safety. We evaluate SPEIS in a wide range of challenging (simulated) environments that involve different types of robots in two different environments: autonomous vehicles from the POLAMP environment and car, point, doggo, and sweep from the safety-gym environment. We demonstrate that our method consistently outperforms state-of-the-art competitors and can significantly reduce the collision rate while maintaining high success rates (higher by 80% compared to the best-performing methods).
- Abstract(参考訳): 強化学習(Reinforcement learning)は、自律ナビゲーションにおいて広く使われているアプローチであり、様々なタスクやロボットのセットアップの可能性を示している。
しかし、安全上の制約が課された場合(例えば、車輪付きロボットは障害物に近づくのを禁止されている)、遠くの目標に達するのに苦労することが多い。
このようなセットアップで性能が低かった主な理由の1つは、安全制約を尊重する必要性がRLエージェントの探索能力を低下させることである。
そこで本研究では,初期問題を中間目標を介し,より小さなサブプロブレムに分解し,一方,累積安全性制約の限界を尊重する新たな学習可能アルゴリズムであるSPEIS(Safe Policy Exploration Improvement via Subgoals)を導入する。
エンドツーエンドでトレーニングされた2つのポリシ – サブゴールとセーフ – で構成されている。
サブゴールポリシーは、安全な(メイン)ポリシーのバッファからの遷移に基づいて、安全な政策が遠くの目標に達するのに役立つサブゴールを生成するように訓練されている。
同時に、安全政策は、累積的安全制約の制限に違反しないようにしながら報酬を最大化し、一定のレベルの安全を提供する。
我々は、POLAMP環境からの自律走行車と車、ポイント、ドッグゴー、安全ジャム環境からの掃除という、2つの異なる環境における異なるタイプのロボットを含む、幅広い困難(シミュレーション)環境でSPEISを評価した。
提案手法は最先端の競争相手よりも一貫して優れており,高い成功率を維持しながら衝突率を大幅に低下させることができる(最良性能の手法に比べて80%も高い)。
関連論文リスト
- Enhanced Safety in Autonomous Driving: Integrating Latent State Diffusion Model for End-to-End Navigation [5.928213664340974]
本研究は自動運転の制御最適化問題における安全性問題に対処する。
本稿では,条件付きバリュー・アット・リスクに基づくソフトアクター批判を利用して,ポリシー最適化のための新しいモデルベースアプローチを提案する。
本手法では, 安全探索を誘導する最悪のアクターを導入し, 予測不可能なシナリオにおいても, 安全要件の厳密な遵守を確保する。
論文 参考訳(メタデータ) (2024-07-08T18:32:40Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
本稿では,リスク感応制御と適応行動空間のカリキュラムを組み合わせた強化学習フレームワークを提案する。
提案アルゴリズムは,現実世界のオフロード運転タスクに対して,高速なポリシーを学習可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T23:32:36Z) - Uniformly Safe RL with Objective Suppression for Multi-Constraint Safety-Critical Applications [73.58451824894568]
広く採用されているCMDPモデルは予測のリスクを制約しており、長い尾の州で危険な行動を起こす余地がある。
安全クリティカルな領域では、そのような行動は破滅的な結果をもたらす可能性がある。
本稿では,目標を最大化するタスク報酬を適応的に抑制する新しい手法であるObjective Suppressionを提案する。
論文 参考訳(メタデータ) (2024-02-23T23:22:06Z) - Evaluation of Safety Constraints in Autonomous Navigation with Deep
Reinforcement Learning [62.997667081978825]
学習可能なナビゲーションポリシとして,セーフとアンセーフの2つを比較します。
安全なポリシは、制約をアカウントに含めますが、もう一方はそうではありません。
安全政策は、よりクリアランスの高い軌道を生成することができ(障害物によらず)、全体的な性能を犠牲にすることなく、トレーニング中に衝突を減らすことができることを示す。
論文 参考訳(メタデータ) (2023-07-27T01:04:57Z) - Safe Reinforcement Learning with Dead-Ends Avoidance and Recovery [13.333197887318168]
安全は、現実的な環境課題に強化学習を適用する上で大きな課題の1つである。
安全かつ安全でない状態を識別する境界を構築する手法を提案する。
我々の手法は、最先端のアルゴリズムよりも安全性違反が少ないタスク性能を持つ。
論文 参考訳(メタデータ) (2023-06-24T12:02:50Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
本稿では,安全評論家と報酬評論家からなる新しい乗法値関数を持つモデルフリーRLアルゴリズムを提案する。
安全評論家は、制約違反の確率を予測し、制限のないリターンのみを見積もる報酬批評家を割引する。
安全制約を付加した古典的RLベンチマークや、画像を用いたロボットナビゲーションタスク、生のライダースキャンを観察する4つの環境において、本手法の評価を行った。
論文 参考訳(メタデータ) (2023-03-07T18:29:15Z) - Safety Correction from Baseline: Towards the Risk-aware Policy in
Robotics via Dual-agent Reinforcement Learning [64.11013095004786]
本稿では,ベースラインと安全エージェントからなる二重エージェント型安全強化学習戦略を提案する。
このような分離されたフレームワークは、RLベースの制御に対して高い柔軟性、データ効率、リスク認識を可能にする。
提案手法は,難易度の高いロボットの移動・操作作業において,最先端の安全RLアルゴリズムより優れる。
論文 参考訳(メタデータ) (2022-12-14T03:11:25Z) - Safety-Constrained Policy Transfer with Successor Features [19.754549649781644]
本稿では,安全制約へのポリシーの移転と遵守を可能にするCMDP(Constrained Markov Decision Process)の定式化を提案する。
我々のアプローチは、Lagrangian の定式化による制約付き設定への一般化された政策改善の新たな拡張に依存している。
シミュレーションドメインでの我々の実験は、我々のアプローチが効果的であることを示し、安全上の制約を考慮に入れた場合、安全でない状態の訪問を少なくし、代替の最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2022-11-10T06:06:36Z) - Safe reinforcement learning for probabilistic reachability and safety
specifications: A Lyapunov-based approach [2.741266294612776]
安全運転の最大確率を学習するモデルフリー安全仕様法を提案する。
提案手法は, 各政策改善段階を抑制するための安全な政策に関して, リャプノフ関数を構築する。
安全集合と呼ばれる安全な操作範囲を決定する一連の安全なポリシーを導出する。
論文 参考訳(メタデータ) (2020-02-24T09:20:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。