論文の概要: Enhancing SQL Query Generation with Neurosymbolic Reasoning
- arxiv url: http://arxiv.org/abs/2408.13888v1
- Date: Sun, 25 Aug 2024 16:37:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 15:42:00.347713
- Title: Enhancing SQL Query Generation with Neurosymbolic Reasoning
- Title(参考訳): ニューロシンボリック推論によるSQLクエリ生成の強化
- Authors: Henrijs Princis, Cristina David, Alan Mycroft,
- Abstract要約: 本稿では,Best-First Search を用いたソリューションツリーの構築と探索を行う,sql クエリ生成のためのニューロシンボリックアーキテクチャを提案する。
この目的のために、LM(Language Model)とシンボリックモジュールを統合し、LMのエラーをキャッチして修正する。
我々のツールであるXanderは平均10.9%の精度向上と平均28%のランタイム削減を実現しています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neurosymbolic approaches blend the effectiveness of symbolic reasoning with the flexibility of neural networks. In this work, we propose a neurosymbolic architecture for generating SQL queries that builds and explores a solution tree using Best-First Search, with the possibility of backtracking. For this purpose, it integrates a Language Model (LM) with symbolic modules that help catch and correct errors made by the LM on SQL queries, as well as guiding the exploration of the solution tree. We focus on improving the performance of smaller open-source LMs, and we find that our tool, Xander, increases accuracy by an average of 10.9% and reduces runtime by an average of 28% compared to the LM without Xander, enabling a smaller LM (with Xander) to outperform its four-times larger counterpart (without Xander).
- Abstract(参考訳): ニューロシンボリックアプローチは、シンボリック推論の有効性とニューラルネットワークの柔軟性をブレンドする。
本研究では,Best-First Searchを用いたソリューションツリーの構築と探索を行うSQLクエリ生成のためのニューロシンボリックアーキテクチャを提案する。
この目的のために、ALM(Language Model)とシンボリックモジュールを統合し、LMがSQLクエリ上で行ったエラーをキャッチし、修正し、ソリューションツリーの探索を導くのに役立つ。
我々は、小型のオープンソースLMの性能向上に重点を置いており、我々のツールであるXanderは、平均10.9%の精度向上とランタイムの28%の削減を実現している。
関連論文リスト
- RSL-SQL: Robust Schema Linking in Text-to-SQL Generation [51.00761167842468]
本稿では、双方向スキーマリンク、コンテキスト情報拡張、バイナリ選択戦略、マルチターン自己補正を組み合わせたRSLと呼ばれる新しいフレームワークを提案する。
ベンチマークの結果,オープンソースのソリューション間でのSOTA実行精度は67.2%,BIRDは87.9%,GPT-4オクルージョンは87.9%であった。
提案手法は,DeepSeekを同一のプロンプトで適用した場合,GPT-4ベースのテキスト・ツー・シークシステムよりも優れている。
論文 参考訳(メタデータ) (2024-10-31T16:22:26Z) - Achieving Sparse Activation in Small Language Models [9.05326883263473]
スパースアクティベーション(sparse activation)は、再訓練や適応をすることなく、LLM(Large Language Models)の計算コストを削減できる手法である。
本稿では,小言語モデル(SLM)におけるスパースアクティベーションの実現を目指す。
まず, ニューロンの出力大小をベースとしたLLMのスパース活性化スキームはSLMには適用できないことを示し, その属性スコアに基づいてニューロンを活性化することがよりよい選択肢であることを示した。
論文 参考訳(メタデータ) (2024-06-03T03:21:49Z) - Scaling Sparse Fine-Tuning to Large Language Models [67.59697720719672]
大きな言語モデル(LLM)は、パラメータの数が多いため、完全な微調整が難しい。
本研究では,パラメータの配列とパラメータのデルタを事前学習した値に対して保持する新しいスパース微調整法SpIELを提案する。
提案手法は,LoRAのようなパラメータ効率の高い微調整法よりも性能が優れ,実行時間も同等であることを示す。
論文 参考訳(メタデータ) (2024-01-29T18:43:49Z) - A Pseudo-Semantic Loss for Autoregressive Models with Logical
Constraints [87.08677547257733]
ニューロシンボリックAIは、純粋にシンボリックな学習とニューラルな学習のギャップを埋める。
本稿では,ニューラルネットワークの出力分布に対するシンボリック制約の可能性を最大化する方法を示す。
また,スドクと最短経路予測の手法を自己回帰世代として評価した。
論文 参考訳(メタデータ) (2023-12-06T20:58:07Z) - SUN: Exploring Intrinsic Uncertainties in Text-to-SQL Parsers [61.48159785138462]
本稿では,ニューラルネットワークに基づくアプローチ(SUN)における本質的な不確かさを探索することにより,テキストから依存への変換性能を向上させることを目的とする。
5つのベンチマークデータセットの大規模な実験により、我々の手法は競合より大幅に優れ、新しい最先端の結果が得られた。
論文 参考訳(メタデータ) (2022-09-14T06:27:51Z) - Is a Question Decomposition Unit All We Need? [20.66688303609522]
モデルを解くのが比較的容易な、より単純な質問の集合に、人間が難解な質問を分解できるかどうかを検討する。
我々は、様々な推論形式を含むデータセットを解析し、モデルの性能を大幅に改善することは実際に可能であることを発見した。
以上の結果から,Human-in-the-loop Question Decomposition (HQD) が大規模LM構築の代替となる可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-25T07:24:09Z) - Transformer-based Machine Learning for Fast SAT Solvers and Logic
Synthesis [63.53283025435107]
CNFベースのSATとMaxSATは論理合成と検証システムの中心である。
そこで本研究では,Transformerアーキテクチャから派生したワンショットモデルを用いて,MaxSAT問題の解法を提案する。
論文 参考訳(メタデータ) (2021-07-15T04:47:35Z) - The RLR-Tree: A Reinforcement Learning Based R-Tree for Spatial Data [33.26284196513858]
B-Treeのような古典的なインデックス構造を機械学習(ML)モデルに置き換えるための学習インデックスが提案されている。
構造やクエリ処理アルゴリズムを変更することなく、従来のR-Treeのクエリ性能を向上させるために、ML技術を使用する根本的に異なる方法を提案します。
論文 参考訳(メタデータ) (2021-03-08T04:29:58Z) - Scaling Up Exact Neural Network Compression by ReLU Stability [22.821726425339797]
安定なニューロンを同定するために,単一最適化問題に基づくアルゴリズムを導入する。
我々の手法は最先端手法の21倍の速度である。
論文 参考訳(メタデータ) (2021-02-15T19:19:02Z) - Closed Loop Neural-Symbolic Learning via Integrating Neural Perception,
Grammar Parsing, and Symbolic Reasoning [134.77207192945053]
従来の手法は強化学習アプローチを用いてニューラルシンボリックモデルを学ぶ。
我々は,脳神経知覚と記号的推論を橋渡しする前に,textbfgrammarモデルをテキストシンボリックとして導入する。
本稿では,トップダウンのヒューマンライクな学習手順を模倣して誤りを伝播する新しいtextbfback-searchアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-11T17:42:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。