ConVis: Contrastive Decoding with Hallucination Visualization for Mitigating Hallucinations in Multimodal Large Language Models
- URL: http://arxiv.org/abs/2408.13906v1
- Date: Sun, 25 Aug 2024 18:02:36 GMT
- Title: ConVis: Contrastive Decoding with Hallucination Visualization for Mitigating Hallucinations in Multimodal Large Language Models
- Authors: Yeji Park, Deokyeong Lee, Junsuk Choe, Buru Chang,
- Abstract summary: We introduce ConVis, a training-free contrastive decoding method.
Our experiments on five popular benchmarks demonstrate that ConVis effectively reduces hallucinations across various MLLMs.
- Score: 11.75855265467876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hallucinations in Multimodal Large Language Models (MLLMs) where generated responses fail to accurately reflect the given image pose a significant challenge to their reliability. To address this, we introduce ConVis, a novel training-free contrastive decoding method. ConVis leverages a text-to-image (T2I) generation model to semantically reconstruct the given image from hallucinated captions. By comparing the contrasting probability distributions produced by the original and reconstructed images, ConVis enables MLLMs to capture visual contrastive signals that penalize hallucination generation. Notably, this method operates purely within the decoding process, eliminating the need for additional data or model updates. Our extensive experiments on five popular benchmarks demonstrate that ConVis effectively reduces hallucinations across various MLLMs, highlighting its potential to enhance model reliability.
Related papers
- PerturboLLaVA: Reducing Multimodal Hallucinations with Perturbative Visual Training [56.172959986096316]
This paper aims to address the challenge of hallucinations in Multimodal Large Language Models (MLLMs)
HalFscore is a novel metric built upon the language graph and is designed to evaluate both the accuracy and completeness of dense captions at a granular level.
PerturboLLaVA significantly improves the fidelity of generated captions, outperforming existing approaches in handling multimodal hallucinations.
arXiv Detail & Related papers (2025-03-09T07:07:03Z) - Self-Correcting Decoding with Generative Feedback for Mitigating Hallucinations in Large Vision-Language Models [66.71616369573715]
Large Vision-Language Models (LVLMs) are prone to generating hallucinatory text responses that do not align with the given visual input.
We introduce self-correcting Decoding with Generative Feedback (DeGF), a novel training-free algorithm that incorporates feedback from text-to-image generative models into the decoding process.
arXiv Detail & Related papers (2025-02-10T03:43:55Z) - Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding [66.06337890279839]
Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks.
LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content.
We propose an Inter-Modality Correlation Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner.
arXiv Detail & Related papers (2025-01-03T17:56:28Z) - Towards a Systematic Evaluation of Hallucinations in Large-Vision Language Models [57.58426038241812]
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance in complex multimodal tasks.
These models still suffer from hallucinations when required to implicitly recognize or infer diverse visual entities from images.
We propose a novel visual question answering (VQA) benchmark that employs contextual reasoning prompts as hallucination attacks.
arXiv Detail & Related papers (2024-12-29T23:56:01Z) - VORD: Visual Ordinal Calibration for Mitigating Object Hallucinations in Large Vision-Language Models [0.20718016474717196]
Large Vision-Language Models (LVLMs) have a tendency to generate plausible yet inaccurate or inconsistent information based on the provided source content.
We present VORD, a simple and effective method that alleviates hallucinations by calibrating token predictions based on ordinal relationships between modified image pairs.
Our experiments demonstrate that VORD delivers better calibration and effectively mitigates object hallucinations on a wide-range of LVLM benchmarks.
arXiv Detail & Related papers (2024-12-20T10:00:26Z) - VaLiD: Mitigating the Hallucination of Large Vision Language Models by Visual Layer Fusion Contrastive Decoding [38.23310445372371]
Large Vision-Language Models (LVLMs) have demonstrated outstanding performance in multimodal task reasoning.
We propose a novel hallucination-mitigation method from the visual encoding perspective: textbfVisutextbfal textbfLayer Fustextbfion Contrastive textbfDecoding (VaLiD)
arXiv Detail & Related papers (2024-11-24T13:42:02Z) - Reducing Hallucinations in Vision-Language Models via Latent Space Steering [34.1755878632361]
Hallucination poses a challenge to the deployment of large vision-language models (LVLMs) in applications.
We introduce Visual and Textual Intervention (VTI), a novel technique designed to reduce hallucinations by steering latent space representations during inference to enhance the stability of vision features.
arXiv Detail & Related papers (2024-10-21T08:42:30Z) - HELPD: Mitigating Hallucination of LVLMs by Hierarchical Feedback Learning with Vision-enhanced Penalty Decoding [36.360171373963716]
Large Vision-Language Models (LVLMs) have shown remarkable performance on many visual-language tasks.
These models still suffer from multimodal hallucination, which means the generation of objects or content that violates the images.
We propose Hierarchical Feedback Learning with Vision-enhanced Penalty Decoding (HELPD) to address this issue.
arXiv Detail & Related papers (2024-09-30T15:52:05Z) - CODE: Contrasting Self-generated Description to Combat Hallucination in Large Multi-modal Models [51.70129969269271]
We introduce a novel contrastive-based decoding method, COuntering DEscription Contrastive Decoding (CODE)
Our method significantly reduces hallucinations and improves cross-modal consistency across various benchmarks and cutting-edge LMMs.
arXiv Detail & Related papers (2024-06-04T03:04:21Z) - Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization [123.54980913741828]
Large Visual Language Models (LVLMs) have demonstrated exceptional abilities in understanding multimodal data.
They invariably suffer from hallucinations, leading to a disconnect between the generated text and the corresponding images.
Almost all current visual contrastive decoding methods attempt to mitigate these hallucinations by introducing visual uncertainty information.
However, they struggle to precisely induce the hallucinatory tokens, which severely limits their effectiveness in mitigating hallucinations.
arXiv Detail & Related papers (2024-05-24T08:46:31Z) - Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding [25.489832294197797]
This paper introduces the Instruction Contrastive Decoding (ICD) method, a novel approach designed to reduce hallucinations during LVLM inference.
Our method is inspired by our observation that what we call disturbance instructions significantly exacerbate hallucinations in multimodal fusion modules.
arXiv Detail & Related papers (2024-03-27T16:04:47Z) - Less is More: Mitigating Multimodal Hallucination from an EOS Decision Perspective [55.41815486466186]
Large Multimodal Models (LMMs) often suffer from multimodal hallucinations, wherein they create content that is not present in the visual inputs.
In this paper, we explore a new angle of this issue: overly detailed training data hinders the model's ability to timely terminate generation.
We find that the model assesses the completeness of the entire sequence by comparing the generated text with the image.
arXiv Detail & Related papers (2024-02-22T13:33:13Z) - Hallucination Augmented Contrastive Learning for Multimodal Large
Language Model [53.65682783591723]
Multi-modal large language models (MLLMs) have been shown to efficiently integrate natural language with visual information to handle multi-modal tasks.
However, MLLMs still face a fundamental limitation of hallucinations, where they tend to generate erroneous or fabricated information.
In this paper, we address hallucinations in MLLMs from a novel perspective of representation learning.
arXiv Detail & Related papers (2023-12-12T04:05:15Z) - Mitigating Object Hallucinations in Large Vision-Language Models through
Visual Contrastive Decoding [125.05295513481035]
We introduce Visual Contrastive Decoding (VCD), a simple and training-free method that contrasts output distributions derived from original and distorted visual inputs.
The proposed VCD effectively reduces the over-reliance on statistical bias and unimodal priors, two essential causes of object hallucinations.
Our experiments show that VCD, without either additional training or the usage of external tools, significantly mitigates the object hallucination issue across different LVLM families.
arXiv Detail & Related papers (2023-11-28T16:26:35Z) - Evaluating Object Hallucination in Large Vision-Language Models [122.40337582958453]
This work presents the first systematic study on object hallucination of large vision-language models (LVLMs)
We find that LVLMs tend to generate objects that are inconsistent with the target images in the descriptions.
We propose a polling-based query method called POPE to evaluate the object hallucination.
arXiv Detail & Related papers (2023-05-17T16:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.