Geo-Llama: Leveraging LLMs for Human Mobility Trajectory Generation with Spatiotemporal Constraints
- URL: http://arxiv.org/abs/2408.13918v3
- Date: Tue, 10 Sep 2024 18:34:23 GMT
- Title: Geo-Llama: Leveraging LLMs for Human Mobility Trajectory Generation with Spatiotemporal Constraints
- Authors: Siyu Li, Toan Tran, Haowen Lin, John Krumm, Cyrus Shahabi, Li Xiong,
- Abstract summary: Geo-Llama is a novel framework to generate realistic trajectories from human mobility data.
It finetunes pre-trained LLMs on trajectories with explicit visit constraints in a contextually coherent way.
Extensive experiments on real-world and synthetic datasets demonstrate its versatility and robustness in handling a broad range of constraints.
- Score: 14.623784198777086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulating human mobility data is essential for various application domains, including transportation, urban planning, and epidemic control, since real data are often inaccessible to researchers due to expensive costs and privacy issues. Several existing deep generative solutions propose learning from real trajectories to generate synthetic ones. Despite the progress, most of them suffer from training stability issues and scale poorly with growing data size. More importantly, they generally lack control mechanisms to steer the generated trajectories based on spatiotemporal constraints such as fixing specific visits. To address such limitations, we formally define the controlled trajectory generation problem with spatiotemporal constraints and propose Geo-Llama. This novel LLM-inspired framework enforces explicit visit constraints in a contextually coherent way. It fine-tunes pre-trained LLMs on trajectories with a visit-wise permutation strategy where each visit corresponds to a time and location. This enables the model to capture the spatiotemporal patterns regardless of visit orders and allows flexible and in-context constraint integration through prompts during generation. Extensive experiments on real-world and synthetic datasets validate the effectiveness of Geo-Llama, demonstrating its versatility and robustness in handling a broad range of constraints to generate more realistic trajectories compared to existing methods.
Related papers
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
We propose a novel collaborative imputation paradigm leveraging meta-learned implicit neural representations (INRs)
We then introduce a cross-city collaborative learning scheme through model-agnostic meta learning.
Experiments on a diverse urban dataset from 20 global cities demonstrate our model's superior imputation performance and generalizability.
arXiv Detail & Related papers (2025-01-20T07:12:40Z) - Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
In this paper, we introduce the conservation-informed GNN (CiGNN), an end-to-end explainable learning framework.
The network is designed to conform to the general symmetry conservation law via symmetry where conservative and non-conservative information passes over a multiscale space by a latent temporal marching strategy.
Results demonstrate that CiGNN exhibits remarkable baseline accuracy and generalizability, and is readily applicable to learning for prediction of varioustemporal dynamics.
arXiv Detail & Related papers (2024-12-30T13:55:59Z) - End-to-end Driving in High-Interaction Traffic Scenarios with Reinforcement Learning [24.578178308010912]
We propose an end-to-end model-based RL algorithm named Ramble to address these issues.
By learning a dynamics model of the environment, Ramble can foresee upcoming traffic events and make more informed, strategic decisions.
Ramble achieves state-of-the-art performance regarding route completion rate and driving score on the CARLA Leaderboard 2.0, showcasing its effectiveness in managing complex and dynamic traffic situations.
arXiv Detail & Related papers (2024-10-03T06:45:59Z) - NUMOSIM: A Synthetic Mobility Dataset with Anomaly Detection Benchmarks [5.852777557137612]
We introduce a synthetic mobility dataset, NUMOSIM, that provides a controlled, ethical, and diverse environment for anomaly benchmarking techniques.
NUMOSIM simulates a wide array of realistic mobility scenarios, encompassing both typical and anomalous behaviours.
We provide open access to the NUMOSIM dataset, along with comprehensive documentation, evaluation metrics, and benchmark results.
arXiv Detail & Related papers (2024-09-04T18:31:24Z) - Decision Mamba: A Multi-Grained State Space Model with Self-Evolution Regularization for Offline RL [57.202733701029594]
We propose Decision Mamba, a novel multi-grained state space model (SSM) with a self-evolving policy learning strategy.
To address these challenges, we propose Decision Mamba, a novel multi-grained state space model (SSM) with a self-evolving policy learning strategy.
To mitigate the overfitting issue on noisy trajectories, a self-evolving policy is proposed by using progressive regularization.
arXiv Detail & Related papers (2024-06-08T10:12:00Z) - Deciphering Human Mobility: Inferring Semantics of Trajectories with Large Language Models [10.841035090991651]
This paper defines semantic inference through three key dimensions: user occupation category, activity, sequence and trajectory description.
We propose Trajectory Semantic Inference with Large Language Models (TSI-LLM) framework to leverage semantic analysis of trajectory data.
arXiv Detail & Related papers (2024-05-30T08:55:48Z) - ControlTraj: Controllable Trajectory Generation with Topology-Constrained Diffusion Model [39.0442700565278]
ControlTraj is a Controllable Trajectory generation framework with the topology-constrained diffusion model.
We develop a novel road segment autoencoder to extract fine-grained road segment embedding.
The encoded features, along with trip attributes, are subsequently merged into the proposed geographic denoising UNet architecture.
arXiv Detail & Related papers (2024-04-23T09:42:45Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
Finding temporal relationships among locations can benefit a bunch of urban applications, such as dynamic offline advertising and smart public transport planning.
We propose a solution to Trial with a graph learning scheme, which includes a spatially evolving graph neural network (SEENet)
SEConv performs the intra-time aggregation and inter-time propagation to capture the multifaceted spatially evolving contexts from the view of location message passing.
SE-SSL designs time-aware self-supervised learning tasks in a global-local manner with additional evolving constraint to enhance the location representation learning and further handle the relationship sparsity.
arXiv Detail & Related papers (2023-06-15T07:48:32Z) - Smoothing the Generative Latent Space with Mixup-based Distance Learning [32.838539968751924]
We consider the situation where neither large scale dataset of our interest nor transferable source dataset is available.
We propose latent mixup-based distance regularization on the feature space of both a generator and the counterpart discriminator.
arXiv Detail & Related papers (2021-11-23T06:39:50Z) - First Steps: Latent-Space Control with Semantic Constraints for
Quadruped Locomotion [73.37945453998134]
Traditional approaches to quadruped control employ simplified, hand-derived models.
This significantly reduces the capability of the robot since its effective kinematic range is curtailed.
In this work, these challenges are addressed by framing quadruped control as optimisation in a structured latent space.
A deep generative model captures a statistical representation of feasible joint configurations, whilst complex dynamic and terminal constraints are expressed via high-level, semantic indicators.
We validate the feasibility of locomotion trajectories optimised using our approach both in simulation and on a real-worldmal quadruped.
arXiv Detail & Related papers (2020-07-03T07:04:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.