Geo-Llama: Leveraging LLMs for Human Mobility Trajectory Generation with Spatiotemporal Constraints
- URL: http://arxiv.org/abs/2408.13918v3
- Date: Tue, 10 Sep 2024 18:34:23 GMT
- Title: Geo-Llama: Leveraging LLMs for Human Mobility Trajectory Generation with Spatiotemporal Constraints
- Authors: Siyu Li, Toan Tran, Haowen Lin, John Krumm, Cyrus Shahabi, Li Xiong,
- Abstract summary: Geo-Llama is a novel framework to generate realistic trajectories from human mobility data.
It finetunes pre-trained LLMs on trajectories with explicit visit constraints in a contextually coherent way.
Extensive experiments on real-world and synthetic datasets demonstrate its versatility and robustness in handling a broad range of constraints.
- Score: 14.623784198777086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulating human mobility data is essential for various application domains, including transportation, urban planning, and epidemic control, since real data are often inaccessible to researchers due to expensive costs and privacy issues. Several existing deep generative solutions propose learning from real trajectories to generate synthetic ones. Despite the progress, most of them suffer from training stability issues and scale poorly with growing data size. More importantly, they generally lack control mechanisms to steer the generated trajectories based on spatiotemporal constraints such as fixing specific visits. To address such limitations, we formally define the controlled trajectory generation problem with spatiotemporal constraints and propose Geo-Llama. This novel LLM-inspired framework enforces explicit visit constraints in a contextually coherent way. It fine-tunes pre-trained LLMs on trajectories with a visit-wise permutation strategy where each visit corresponds to a time and location. This enables the model to capture the spatiotemporal patterns regardless of visit orders and allows flexible and in-context constraint integration through prompts during generation. Extensive experiments on real-world and synthetic datasets validate the effectiveness of Geo-Llama, demonstrating its versatility and robustness in handling a broad range of constraints to generate more realistic trajectories compared to existing methods.
Related papers
- End-to-end Driving in High-Interaction Traffic Scenarios with Reinforcement Learning [24.578178308010912]
We propose an end-to-end model-based RL algorithm named Ramble to address these issues.
By learning a dynamics model of the environment, Ramble can foresee upcoming traffic events and make more informed, strategic decisions.
Ramble achieves state-of-the-art performance regarding route completion rate and driving score on the CARLA Leaderboard 2.0, showcasing its effectiveness in managing complex and dynamic traffic situations.
arXiv Detail & Related papers (2024-10-03T06:45:59Z) - NUMOSIM: A Synthetic Mobility Dataset with Anomaly Detection Benchmarks [5.852777557137612]
We introduce a synthetic mobility dataset, NUMOSIM, that provides a controlled, ethical, and diverse environment for anomaly benchmarking techniques.
NUMOSIM simulates a wide array of realistic mobility scenarios, encompassing both typical and anomalous behaviours.
We provide open access to the NUMOSIM dataset, along with comprehensive documentation, evaluation metrics, and benchmark results.
arXiv Detail & Related papers (2024-09-04T18:31:24Z) - LLM-A*: Large Language Model Enhanced Incremental Heuristic Search on Path Planning [91.95362946266577]
Path planning is a fundamental scientific problem in robotics and autonomous navigation.
Traditional algorithms like A* and its variants are capable of ensuring path validity but suffer from significant computational and memory inefficiencies as the state space grows.
We propose a new LLM based route planning method that synergistically combines the precise pathfinding capabilities of A* with the global reasoning capability of LLMs.
This hybrid approach aims to enhance pathfinding efficiency in terms of time and space complexity while maintaining the integrity of path validity, especially in large-scale scenarios.
arXiv Detail & Related papers (2024-06-20T01:24:30Z) - Decision Mamba: A Multi-Grained State Space Model with Self-Evolution Regularization for Offline RL [57.202733701029594]
Decision Mamba is a novel multi-grained state space model with a self-evolving policy learning strategy.
To mitigate the overfitting issue on noisy trajectories, a self-evolving policy is proposed by using progressive regularization.
The policy evolves by using its own past knowledge to refine the suboptimal actions, thus enhancing its robustness on noisy demonstrations.
arXiv Detail & Related papers (2024-06-08T10:12:00Z) - Deciphering Human Mobility: Inferring Semantics of Trajectories with Large Language Models [10.841035090991651]
This paper defines semantic inference through three key dimensions: user occupation category, activity, sequence and trajectory description.
We propose Trajectory Semantic Inference with Large Language Models (TSI-LLM) framework to leverage semantic analysis of trajectory data.
arXiv Detail & Related papers (2024-05-30T08:55:48Z) - ControlTraj: Controllable Trajectory Generation with Topology-Constrained Diffusion Model [39.0442700565278]
ControlTraj is a Controllable Trajectory generation framework with the topology-constrained diffusion model.
We develop a novel road segment autoencoder to extract fine-grained road segment embedding.
The encoded features, along with trip attributes, are subsequently merged into the proposed geographic denoising UNet architecture.
arXiv Detail & Related papers (2024-04-23T09:42:45Z) - Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
Trajectory computing is crucial in various practical applications such as location services, urban traffic, and public safety.
We present a review of development and recent advances in deep learning for trajectory computing (DL4Traj)
Notably, we encapsulate recent advancements in Large Language Models (LLMs) that hold potential to augment trajectory computing.
arXiv Detail & Related papers (2024-03-21T05:57:27Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
Finding temporal relationships among locations can benefit a bunch of urban applications, such as dynamic offline advertising and smart public transport planning.
We propose a solution to Trial with a graph learning scheme, which includes a spatially evolving graph neural network (SEENet)
SEConv performs the intra-time aggregation and inter-time propagation to capture the multifaceted spatially evolving contexts from the view of location message passing.
SE-SSL designs time-aware self-supervised learning tasks in a global-local manner with additional evolving constraint to enhance the location representation learning and further handle the relationship sparsity.
arXiv Detail & Related papers (2023-06-15T07:48:32Z) - Smoothing the Generative Latent Space with Mixup-based Distance Learning [32.838539968751924]
We consider the situation where neither large scale dataset of our interest nor transferable source dataset is available.
We propose latent mixup-based distance regularization on the feature space of both a generator and the counterpart discriminator.
arXiv Detail & Related papers (2021-11-23T06:39:50Z) - First Steps: Latent-Space Control with Semantic Constraints for
Quadruped Locomotion [73.37945453998134]
Traditional approaches to quadruped control employ simplified, hand-derived models.
This significantly reduces the capability of the robot since its effective kinematic range is curtailed.
In this work, these challenges are addressed by framing quadruped control as optimisation in a structured latent space.
A deep generative model captures a statistical representation of feasible joint configurations, whilst complex dynamic and terminal constraints are expressed via high-level, semantic indicators.
We validate the feasibility of locomotion trajectories optimised using our approach both in simulation and on a real-worldmal quadruped.
arXiv Detail & Related papers (2020-07-03T07:04:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.