Let Curves Speak: A Continuous Glucose Monitor based Large Sensor Foundation Model for Diabetes Management
- URL: http://arxiv.org/abs/2412.09727v2
- Date: Wed, 18 Dec 2024 03:07:48 GMT
- Title: Let Curves Speak: A Continuous Glucose Monitor based Large Sensor Foundation Model for Diabetes Management
- Authors: Junjie Luo, Abhimanyu Kumbara, Mansur Shomali, Rui Han, Anand Iyer, Ritu Agarwal, Gordon Gao,
- Abstract summary: Integrating AI with continuous glucose monitoring holds promise for near-future glucose prediction.<n>CGM-LSM is pretrained on 15.96 million glucose records from 592 diabetes patients for near-future glucose prediction.<n>LSM achieved exceptional performance, with an rMSE of 29.81 mg/dL for type 1 diabetes patients and 23.49 mg/dL for type 2 diabetes patients in a two-hour prediction horizon.
- Score: 3.8195320624847833
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While previous studies of AI in diabetes management focus on long-term risk, research on near-future glucose prediction remains limited but important as it enables timely diabetes self-management. Integrating AI with continuous glucose monitoring (CGM) holds promise for near-future glucose prediction. However, existing models have limitations in capturing patterns of blood glucose fluctuations and demonstrate poor generalizability. A robust approach is needed to leverage massive CGM data for near-future glucose prediction. We propose large sensor models (LSMs) to capture knowledge in CGM data by modeling patients as sequences of glucose. CGM-LSM is pretrained on 15.96 million glucose records from 592 diabetes patients for near-future glucose prediction. We evaluated CGM-LSM against state-of-the-art methods using the OhioT1DM dataset across various metrics, prediction horizons, and unseen patients. Additionally, we assessed its generalizability across factors like diabetes type, age, gender, and hour of day. CGM-LSM achieved exceptional performance, with an rMSE of 29.81 mg/dL for type 1 diabetes patients and 23.49 mg/dL for type 2 diabetes patients in a two-hour prediction horizon. For the OhioT1DM dataset, CGM-LSM achieved a one-hour rMSE of 15.64 mg/dL, halving the previous best of 31.97 mg/dL. Robustness analyses revealed consistent performance not only for unseen patients and future periods, but also across diabetes type, age, and gender. The model demonstrated adaptability to different hours of day, maintaining accuracy across periods of various activity intensity levels. CGM-LSM represents a transformative step in diabetes management by leveraging pretraining to uncover latent glucose generation patterns in sensor data. Our findings also underscore the broader potential of LSMs to drive innovation across domains involving complex sensor data.
Related papers
- Type 1 Diabetes Management using GLIMMER: Glucose Level Indicator Model with Modified Error Rate [6.300322064585917]
We develop GLIMMER, a machine learning approach for forecasting blood glucose levels.
GLIMMER categorizes glucose values into normal and abnormal ranges and devises a novel custom loss function to prioritize accuracy in dysglycemic events.
arXiv Detail & Related papers (2025-02-20T01:26:00Z) - Chronic Disease Diagnoses Using Behavioral Data [42.96592744768303]
We aim to diagnose hyperglycemia (diabetes), hyperlipidemia, and hypertension (collectively known as 3H) using own collected behavioral data.
arXiv Detail & Related papers (2024-10-04T12:52:49Z) - FedGlu: A personalized federated learning-based glucose forecasting algorithm for improved performance in glycemic excursion regions [4.073768455373616]
Continuous glucose monitoring (CGM) devices provide real-time glucose monitoring and timely alerts for glycemic excursions.
Rare events like hypoglycemia and hyperglycemia remain challenging due to their infrequency.
We propose a novel Hypo-Hyper (HH) loss function, which significantly improves performance in the glycemic excursion regions.
arXiv Detail & Related papers (2024-08-25T19:51:27Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
We present GluFormer, a generative foundation model on biomedical temporal data based on a transformer architecture.
GluFormer generalizes to 15 different external datasets, including 4936 individuals across 5 different geographical regions.
It can also predict onset of future health outcomes even 4 years in advance.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - Automatic Prediction of Amyotrophic Lateral Sclerosis Progression using Longitudinal Speech Transformer [56.17737749551133]
We propose ALS longitudinal speech transformer (ALST), a neural network-based automatic predictor of ALS disease progression.
By taking advantage of high-quality pretrained speech features and longitudinal information in the recordings, our best model achieves 91.0% AUC.
ALST is capable of fine-grained and interpretable predictions of ALS progression, especially for distinguishing between rarer and more severe cases.
arXiv Detail & Related papers (2024-06-26T13:28:24Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Toward Short-Term Glucose Prediction Solely Based on CGM Time Series [4.7066018521459725]
TimeGlu is an end-to-end pipeline for short-term glucose prediction based on CGM time series data.
It achieves state-of-the-art performance without the need for additional personal data from patients.
arXiv Detail & Related papers (2024-04-18T06:02:12Z) - Patterns Detection in Glucose Time Series by Domain Transformations and
Deep Learning [0.0]
We describe our research with the aim of predicting the future behavior of blood glucose levels, so that hypoglycemic events may be anticipated.
We have tested our proposed method using real data from 4 different diabetes patients with promising results.
arXiv Detail & Related papers (2023-03-30T09:08:31Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
Continuous Glucose Monitoring (CGM) devices offer detailed, non-intrusive and real time insights into a patient's blood glucose concentrations.
Leveraging advanced Machine Learning (ML) Models as methods of prediction of future glucose levels, gives rise to substantial quality of life improvements.
arXiv Detail & Related papers (2023-02-24T19:10:40Z) - Task-wise Split Gradient Boosting Trees for Multi-center Diabetes
Prediction [37.846368153741395]
Task-wise Split Gradient Boosting Trees (TSGB) is proposed for the multi-center diabetes prediction task.
TSGB achieves superior performance against several state-of-the-art methods.
The proposed TSGB method has been deployed as an online diabetes risk assessment software for early diagnosis.
arXiv Detail & Related papers (2021-08-16T14:22:44Z) - Stacked LSTM Based Deep Recurrent Neural Network with Kalman Smoothing
for Blood Glucose Prediction [4.040272012640556]
We propose a novel approach to predicting blood glucose level with a stacked Long short-term memory (LSTM) based deep recurrent neural network (RNN) model.
For the OhioT1DM dataset, containing eight weeks' data from six different patients, we achieve an average RMSE of 6.45 and 17.24 mg/dl for 30 minutes and 60 minutes of prediction horizon (PH)
Our results indicate that the proposed approach is feasible for more reliable BG forecasting that might improve the performance of the artificial pancreas and insulin infusion system for T1D diabetes management.
arXiv Detail & Related papers (2021-01-18T02:31:38Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.