論文の概要: More Pictures Say More: Visual Intersection Network for Open Set Object Detection
- arxiv url: http://arxiv.org/abs/2408.14032v1
- Date: Mon, 26 Aug 2024 05:52:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 14:52:59.882733
- Title: More Pictures Say More: Visual Intersection Network for Open Set Object Detection
- Title(参考訳): 画像がさらに増える:オープンセットオブジェクト検出のためのビジュアルインターセクションネットワーク
- Authors: Bingcheng Dong, Yuning Ding, Jinrong Zhang, Sifan Zhang, Shenglan Liu,
- Abstract要約: オープンセットオブジェクト検出(VINO)のための強力なDETRモデルであるVisual Intersection Networkを導入する。
VINOは、すべての時間ステップにまたがるカテゴリのセマンティックな交差を保存するために、マルチイメージのビジュアルバンクを構築する。
提案手法は,対象カテゴリ意味論と領域意味論のより正確な一致を保証するとともに,事前学習時間とリソース要求を著しく低減する。
- 参考スコア(独自算出の注目度): 4.206612461069489
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open Set Object Detection has seen rapid development recently, but it continues to pose significant challenges. Language-based methods, grappling with the substantial modal disparity between textual and visual modalities, require extensive computational resources to bridge this gap. Although integrating visual prompts into these frameworks shows promise for enhancing performance, it always comes with constraints related to textual semantics. In contrast, viusal-only methods suffer from the low-quality fusion of multiple visual prompts. In response, we introduce a strong DETR-based model, Visual Intersection Network for Open Set Object Detection (VINO), which constructs a multi-image visual bank to preserve the semantic intersections of each category across all time steps. Our innovative multi-image visual updating mechanism learns to identify the semantic intersections from various visual prompts, enabling the flexible incorporation of new information and continuous optimization of feature representations. Our approach guarantees a more precise alignment between target category semantics and region semantics, while significantly reducing pre-training time and resource demands compared to language-based methods. Furthermore, the integration of a segmentation head illustrates the broad applicability of visual intersection in various visual tasks. VINO, which requires only 7 RTX4090 GPU days to complete one epoch on the Objects365v1 dataset, achieves competitive performance on par with vision-language models on benchmarks such as LVIS and ODinW35.
- Abstract(参考訳): Open Set Object Detectionは最近急速に開発が進んでいるが、大きな課題が続いている。
言語に基づく手法は、テキストと視覚の相違がかなり大きいため、このギャップを埋めるために膨大な計算資源を必要とする。
これらのフレームワークに視覚的なプロンプトを統合することでパフォーマンスを向上させることは約束されるが、常にテキストセマンティクスに関する制約が伴う。
対照的に、視覚のみの方法は、複数の視覚的プロンプトの低品質な融合に悩まされる。
そこで我々は,DTRベースの強力なモデルであるVisual Intersection Network for Open Set Object Detection (VINO)を導入する。
我々の革新的なマルチイメージビジュアル更新機構は、様々な視覚的プロンプトから意味的交叉を識別し、新しい情報の柔軟な取り込みと特徴表現の連続的な最適化を可能にする。
提案手法は,対象のカテゴリ意味論と地域意味論のより正確な一致を保証するとともに,事前学習時間と資源要求を言語ベースの手法と比較して著しく低減する。
さらに、セグメンテーションヘッドの統合は、様々な視覚的タスクにおける視覚的交叉の広い適用性を示している。
VINOは、Objects365v1データセットで1エポックを完了するのにわずか7 RTX4090 GPU日しか必要としないが、LVISやODinW35のようなベンチマーク上のビジョン言語モデルと同等の競合性能を達成する。
関連論文リスト
- OLIVE: Object Level In-Context Visual Embeddings [8.168219870640318]
テキスト内ビジュアルオブジェクトベクトルを用いた大規模言語モデルを提案する。
これにより、画像パッチ機能の長い配列を融合する必要がなくなり、トレーニングが大幅にスピードアップする。
実験の結果,提案手法は競合参照対象分類とキャプション性能を実現する。
論文 参考訳(メタデータ) (2024-06-02T21:36:31Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
マルチモーダル参照から画素単位のオブジェクト認識と自然言語記述を生成できる汎用MLLMモデルであるbfAnyRefを提案する。
本モデルでは,領域レベルの参照表現生成とセグメンテーションの多様さを含む,複数のベンチマークにおける最先端結果を実現する。
論文 参考訳(メタデータ) (2024-03-05T13:45:46Z) - Contextual Object Detection with Multimodal Large Language Models [66.15566719178327]
本稿では,コンテキストオブジェクト検出の新たな研究課題について紹介する。
言語クローゼテスト,視覚キャプション,質問応答の3つの代表的なシナリオについて検討した。
本稿では、視覚的コンテキストのエンドツーエンドの微分可能なモデリングが可能な統合マルチモーダルモデルContextDETを提案する。
論文 参考訳(メタデータ) (2023-05-29T17:50:33Z) - MAMO: Masked Multimodal Modeling for Fine-Grained Vision-Language
Representation Learning [23.45678557013005]
そこで本研究では,細粒度マルチモーダル表現を学習するためのマスク付きマルチモーダルモデリング手法を提案する。
本手法は,画像テキスト入力において共同マスキングを行い,暗黙的および明示的の両方のターゲットを結合してマスク信号の復元を行う。
本モデルは,画像テキスト検索,視覚的質問応答,視覚的推論,弱教師付き視覚的グラウンドティングなど,さまざまな下流視覚言語タスクにおける最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-10-09T06:31:15Z) - Fine-Grained Semantically Aligned Vision-Language Pre-Training [151.7372197904064]
大規模な視覚言語による事前学習は、幅広い下流タスクにおいて顕著な進歩を見せている。
既存の手法は主に、画像とテキストのグローバルな表現の類似性によって、モーダル間のアライメントをモデル化する。
ゲーム理論的相互作用の新たな視点から, 微粒なセマンティックアライメントを学習する, 微粒なセマンティックなvisiOn-langUage PrEトレーニングフレームワークであるLOを導入する。
論文 参考訳(メタデータ) (2022-08-04T07:51:48Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUGは、クロスモーダルな理解と生成のための新しいビジョン言語基盤モデルである。
画像キャプション、画像テキスト検索、視覚的グラウンドリング、視覚的質問応答など、幅広い視覚言語下流タスクの最先端結果を達成する。
論文 参考訳(メタデータ) (2022-05-24T11:52:06Z) - Encoder Fusion Network with Co-Attention Embedding for Referring Image
Segmentation [87.01669173673288]
本稿では,視覚的エンコーダをマルチモーダルな特徴学習ネットワークに変換するエンコーダ融合ネットワーク(EFN)を提案する。
EFNには、マルチモーダル機能の並列更新を実現するコアテンションメカニズムが組み込まれている。
4つのベンチマークデータセットによる実験結果から,提案手法がポストプロセッシングを伴わずに最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2021-05-05T02:27:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。