論文の概要: OLIVE: Object Level In-Context Visual Embeddings
- arxiv url: http://arxiv.org/abs/2406.00872v1
- Date: Sun, 2 Jun 2024 21:36:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 02:56:53.449437
- Title: OLIVE: Object Level In-Context Visual Embeddings
- Title(参考訳): OLIVE:オブジェクトレベルのコンテキスト内ビジュアル埋め込み
- Authors: Timothy Ossowski, Junjie Hu,
- Abstract要約: テキスト内ビジュアルオブジェクトベクトルを用いた大規模言語モデルを提案する。
これにより、画像パッチ機能の長い配列を融合する必要がなくなり、トレーニングが大幅にスピードアップする。
実験の結果,提案手法は競合参照対象分類とキャプション性能を実現する。
- 参考スコア(独自算出の注目度): 8.168219870640318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent generalist vision-language models (VLMs) have demonstrated impressive reasoning capabilities across diverse multimodal tasks. However, these models still struggle with fine-grained object-level understanding and grounding. In terms of modeling, existing VLMs implicitly align text tokens with image patch tokens, which is ineffective for embedding alignment at the same granularity and inevitably introduces noisy spurious background features. Additionally, these models struggle when generalizing to unseen visual concepts and may not be reliable for domain-specific tasks without further fine-tuning. To address these limitations, we propose a novel method to prompt large language models with in-context visual object vectors, thereby enabling controllable object-level reasoning. This eliminates the necessity of fusing a lengthy array of image patch features and significantly speeds up training. Furthermore, we propose region-level retrieval using our object representations, facilitating rapid adaptation to new objects without additional training. Our experiments reveal that our method achieves competitive referring object classification and captioning performance, while also offering zero-shot generalization and robustness to visually challenging contexts.
- Abstract(参考訳): 近年の汎用視覚言語モデル (VLM) は多様なマルチモーダルタスクにまたがる印象的な推論能力を示している。
しかし、これらのモデルはいまだに微粒なオブジェクトレベルの理解と接地に苦慮している。
モデリングの面では、既存のVLMはテキストトークンとイメージパッチトークンを暗黙的にアライメントする。
さらに、これらのモデルは視覚的な概念が見えないように一般化する際に苦労し、さらなる微調整なしではドメイン固有のタスクには信頼できない可能性がある。
これらの制約に対処するため,テキスト内ビジュアルオブジェクトベクトルを用いた大規模言語モデルの提案を行い,制御可能なオブジェクトレベルの推論を可能にする。
これにより、画像パッチ機能の長い配列を融合する必要がなくなり、トレーニングが大幅にスピードアップする。
さらに,我々の対象表現を用いた地域レベルの検索を提案し,新たな対象への迅速な適応を容易にする。
提案手法は,視覚的に困難なコンテキストに対して,ゼロショットの一般化とロバスト性を提供しながら,競合参照オブジェクトの分類とキャプション性能を実現する。
関連論文リスト
- Distilling Spectral Graph for Object-Context Aware Open-Vocabulary Semantic Segmentation [47.047267066525265]
画像にオブジェクトレベルの文脈知識を取り入れた新しいアプローチを導入する。
提案手法は,多種多様なデータセットにまたがる高い一般化性を有する最先端性能を実現する。
論文 参考訳(メタデータ) (2024-11-26T06:34:48Z) - Teaching VLMs to Localize Specific Objects from In-context Examples [56.797110842152]
VLM(Vision-Language Models)は、様々な視覚タスクにまたがる顕著な能力を示す。
現在のVLMには基本的な認知能力がなく、コンテキストを考慮し、シーン内のオブジェクトをローカライズすることを学ぶ。
この研究は、VLMのパーソナライズされた数ショットのローカライゼーションを探索し、ベンチマークした初めてのものである。
論文 参考訳(メタデータ) (2024-11-20T13:34:22Z) - More Pictures Say More: Visual Intersection Network for Open Set Object Detection [4.206612461069489]
オープンセットオブジェクト検出(VINO)のための強力なDETRモデルであるVisual Intersection Networkを導入する。
VINOは、すべての時間ステップにまたがるカテゴリのセマンティックな交差を保存するために、マルチイメージのビジュアルバンクを構築する。
提案手法は,対象カテゴリ意味論と領域意味論のより正確な一致を保証するとともに,事前学習時間とリソース要求を著しく低減する。
論文 参考訳(メタデータ) (2024-08-26T05:52:35Z) - Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model [27.56988000960972]
ドメイン共有コンテキストとクラス固有コンテキストの両方の2つのコンテキストに基づいた新しいフレームワークを導入する。
このような二重プロンプト手法は、大規模言語モデルで符号化された暗黙的および明示的な要素を結合することによって、モデルの特徴表現を強化する。
また、構築されたプロンプトと視覚トークンの関係を定量化するために、不均衡最適輸送(UOT)理論を定式化する。
論文 参考訳(メタデータ) (2024-07-05T13:15:29Z) - ClawMachine: Fetching Visual Tokens as An Entity for Referring and Grounding [67.63933036920012]
プロキシエンコーディングやジオメトリエンコーディングを含む既存のメソッドには、オブジェクトの位置をエンコードするための追加構文が含まれている。
この研究はClawMachineを紹介し、視覚トークンを直接使用してエンティティに通知する新しい方法論を提供する。
ClawMachineはビジュアル参照とグラウンドを自動回帰形式に統合し、デコーダのみのアーキテクチャで学習する。
論文 参考訳(メタデータ) (2024-06-17T08:39:16Z) - Griffon v2: Advancing Multimodal Perception with High-Resolution Scaling and Visual-Language Co-Referring [27.45225442048711]
我々は、視覚的およびテキスト的プロンプトによるフレキシブルなオブジェクト参照を可能にする、統合された高分解能一般化モデル、Griffon v2を導入する。
我々は,大規模言語モデルにおける入力トークン制約を克服するために,シンプルで軽量なダウンサンプリングプロジェクタを設計する。
実験により、Griffon v2は、視覚的およびテキスト的参照で関心のあるオブジェクトをローカライズし、REC、フレーズグラウンド、REGタスクにおける最先端のパフォーマンスを実現し、オブジェクト検出とオブジェクトカウントのエキスパートモデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-03-14T12:21:37Z) - Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception [63.03288425612792]
マルチモーダル参照から画素単位のオブジェクト認識と自然言語記述を生成できる汎用MLLMモデルであるbfAnyRefを提案する。
本モデルでは,領域レベルの参照表現生成とセグメンテーションの多様さを含む,複数のベンチマークにおける最先端結果を実現する。
論文 参考訳(メタデータ) (2024-03-05T13:45:46Z) - GRILL: Grounded Vision-language Pre-training via Aligning Text and Image
Regions [92.96783800362886]
未知のタスクへの一般化は、少数の学習者が多様なタスクにおいてより優れたゼロ/フェーショットのパフォーマンスを達成できる重要な能力である。
GRILLは視覚的質問応答やキャプション,接地タスクなどの多様なタスクに,ほとんど,あるいはごく少数のトレーニングインスタンスで一般化可能な,新しいVLモデルである。
論文 参考訳(メタデータ) (2023-05-24T03:33:21Z) - SgVA-CLIP: Semantic-guided Visual Adapting of Vision-Language Models for
Few-shot Image Classification [84.05253637260743]
本稿では,セマンティック誘導視覚適応(SgVA)と呼ばれる新しいフレームワークを提案する。
SgVAは、視覚特異的のコントラスト損失、クロスモーダルのコントラスト損失、暗黙の知識蒸留を包括的に利用することで、識別的なタスク固有の視覚特徴を生成する。
13のデータセットの最先端の結果は、適応された視覚的特徴が、クロスモーダルな特徴を補完し、少数の画像分類を改善することを実証している。
論文 参考訳(メタデータ) (2022-11-28T14:58:15Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUGは、クロスモーダルな理解と生成のための新しいビジョン言語基盤モデルである。
画像キャプション、画像テキスト検索、視覚的グラウンドリング、視覚的質問応答など、幅広い視覚言語下流タスクの最先端結果を達成する。
論文 参考訳(メタデータ) (2022-05-24T11:52:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。