論文の概要: Application of Disentanglement to Map Registration Problem
- arxiv url: http://arxiv.org/abs/2408.14152v1
- Date: Mon, 26 Aug 2024 09:55:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 14:23:20.230203
- Title: Application of Disentanglement to Map Registration Problem
- Title(参考訳): 解離の地図登録問題への応用
- Authors: Hae Jin Song, Patrycja Krawczuk, Po-Hsuan Huang,
- Abstract要約: まず、異なる地理空間データの「スタイル」を、地球表面上の同じ位置を指し示す画像に合わせることが不可欠である。
本研究では,地理情報と芸術様式の絡み合いと新たな地図タイルの生成を両立させるため,$beta$-VAEのようなアーキテクチャと敵の訓練を組み合わせることを提案する。
- 参考スコア(独自算出の注目度): 0.3277163122167434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geospatial data come from various sources, such as satellites, aircraft, and LiDAR. The variability of the source is not limited to the types of data acquisition techniques, as we have maps from different time periods. To incorporate these data for a coherent analysis, it is essential to first align different "styles" of geospatial data to its matching images that point to the same location on the surface of the Earth. In this paper, we approach the image registration as a two-step process of (1) extracting geospatial contents invariant to visual (and any other non-content-related) information, and (2) matching the data based on such (purely) geospatial contents. We hypothesize that a combination of $\beta$-VAE-like architecture [2] and adversarial training will achieve both the disentanglement of the geographic information and artistic styles and generation of new map tiles by composing the encoded geographic information with any artistic style.
- Abstract(参考訳): 地理空間データは、衛星、航空機、LiDARなどの様々な情報源から得られた。
ソースのばらつきは、異なる期間の地図があるため、データ取得技術の種類に限ったものではない。
これらのデータをコヒーレントな解析に組み込むためには、まず異なる地理空間データの「スタイル」を、地球表面上の同じ位置を指し示す画像に合わせることが不可欠である。
本稿では,(1)視覚的(および他の非コンテンツ関連)情報に不変な地理空間コンテンツを抽出する2段階のプロセスとして,画像登録にアプローチする。
我々は、$\beta$-VAE-like Architecture [2]と敵対的トレーニングを組み合わせることで、地理的情報と芸術的スタイルの切り離しと、エンコードされた地理情報を任意の芸術的スタイルで構成することで、新しい地図タイルの生成を達成できると仮定する。
関連論文リスト
- AddressCLIP: Empowering Vision-Language Models for City-wide Image Address Localization [57.34659640776723]
そこで我々は,より意味論的に問題を解決するために,AddressCLIPというエンドツーエンドのフレームワークを提案する。
われわれはピッツバーグとサンフランシスコに3つのデータセットを構築した。
論文 参考訳(メタデータ) (2024-07-11T03:18:53Z) - Classification for everyone : Building geography agnostic models for fairer recognition [0.9558392439655016]
私たちはこのバイアスを2つのデータセット、The Dollar StreetデータセットとImageNetに定量的に提示します。
そして、このバイアスを減らすために様々な方法を提示します。
論文 参考訳(メタデータ) (2023-12-05T18:41:03Z) - GeoCLIP: Clip-Inspired Alignment between Locations and Images for
Effective Worldwide Geo-localization [61.10806364001535]
世界規模のジオローカライゼーションは、地球上のどこでも撮影された画像の正確な位置を特定することを目的としている。
既存のアプローチは、地球を離散的な地理的細胞に分割し、問題を分類タスクに変換する。
画像と対応するGPS位置のアライメントを強制する新しいCLIPにインスパイアされた画像-GPS検索手法であるGeoCLIPを提案する。
論文 参考訳(メタデータ) (2023-09-27T20:54:56Z) - Geo-Tiles for Semantic Segmentation of Earth Observation Imagery [7.49377967268953]
既存の手法とベンチマークデータセットは、ピクセルベースのタイリングスキームや、Webマッピングアプリケーションで使用されるジオタイリングスキームに依存している。
異種データに基づくジオタイルを生成するタイリング方式を用いて,地球観測画像のための新しいセグメンテーションパイプラインを提案する。
このアプローチは、ピクセルベースの、あるいは一般的なWebマッピングアプローチと比較して、いくつかの有益な特性を示す。
提案システムは,現在最先端のセマンティックセグメンテーションモデルの結果を改善することができることを示す。
論文 参考訳(メタデータ) (2023-06-01T15:46:04Z) - GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark [56.08664336835741]
我々はGeoGLUEと呼ばれるGeoGraphic Language Understanding Evaluationベンチマークを提案する。
オープンソースの地理資源からデータを収集し、6つの自然言語理解タスクを導入する。
我々は,GeoGLUEベンチマークの有効性と意義を示す一般ベースラインの評価実験と解析を行った。
論文 参考訳(メタデータ) (2023-05-11T03:21:56Z) - Where We Are and What We're Looking At: Query Based Worldwide Image
Geo-localization Using Hierarchies and Scenes [53.53712888703834]
地理的レベルの異なる関係を利用して、エンドツーエンドのトランスフォーマーベースのアーキテクチャを導入する。
4つの標準ジオローカライゼーションデータセット上で,アートストリートレベルの精度を実現する。
論文 参考訳(メタデータ) (2023-03-07T21:47:58Z) - Cross-view Geo-localization via Learning Disentangled Geometric Layout
Correspondence [11.823147814005411]
クロスビュージオローカライゼーションは、参照ジオタグ付き空中画像データベースとマッチングすることで、クエリーグラウンド画像の位置を推定することを目的としている。
最近の研究は、クロスビューなジオローカライゼーションベンチマークにおいて顕著な進歩を遂げている。
しかし、既存の手法は依然としてクロスエリアベンチマークのパフォーマンスの低下に悩まされている。
論文 参考訳(メタデータ) (2022-12-08T04:54:01Z) - Activation Regression for Continuous Domain Generalization with
Applications to Crop Classification [48.795866501365694]
衛星画像の地理的変異は、機械学習モデルが新しい領域に一般化する能力に影響を与える。
中分解能ランドサット8衛星画像の地理的一般化を連続領域適応問題としてモデル化する。
我々は,アメリカ大陸全域に空間分布するデータセットを開発した。
論文 参考訳(メタデータ) (2022-04-14T15:41:39Z) - PetroGAN: A novel GAN-based approach to generate realistic, label-free
petrographic datasets [0.0]
本研究では,GAN(Generative Adversarial Network)に基づく新しいディープラーニングフレームワークを開発し,最初のリアルな合成石油写真データセットを作成する。
トレーニングデータセットは、平面光と横偏光の両方で岩石の薄い部分の10070枚の画像で構成されている。
このアルゴリズムは264のGPU時間で訓練され、ペトログラフ画像のFr'echet Inception Distance(FID)スコアが12.49に達した。
論文 参考訳(メタデータ) (2022-04-07T01:55:53Z) - Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image
Matching [102.39635336450262]
地上で取得したクエリ画像とジオタグ付き衛星画像の大規模データベースとをマッチングすることにより、地上から衛星画像のジオローカライズの問題に対処する。
我々の新しい手法は、衛星画像のピクセルサイズの精度まで、クエリー画像のきめ細かい位置を達成できる。
論文 参考訳(メタデータ) (2022-03-26T20:10:38Z) - Narrative Cartography with Knowledge Graphs [10.715484138543069]
ナレッジグラフ(KG)を用いたナラティブカルトグラフィーの考え方を提案する。
データ取得と統合の課題に取り組むため、我々はKGベースのGeoEnrichmentツールボックスセットを開発した。
このツールの助けを借りて、KGから取得したデータはGIS形式で直接実体化される。
論文 参考訳(メタデータ) (2021-12-02T04:01:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。