論文の概要: Dynamic Pricing for Electric Vehicle Charging
- arxiv url: http://arxiv.org/abs/2408.14169v1
- Date: Mon, 26 Aug 2024 10:32:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 14:23:20.208481
- Title: Dynamic Pricing for Electric Vehicle Charging
- Title(参考訳): 電気自動車充電における動的価格設定
- Authors: Arun Kumar Kalakanti, Shrisha Rao,
- Abstract要約: 複数の競合する目的に効率的に対処することで、動的価格問題に対する新しい定式化を開発する。
動的価格モデルは、複数の競合する目的を同時に解決しながら、需要と価格の関係を定量化する。
カリフォルニアの2つの充電サイトのリアルワールドデータが我々のアプローチを検証する。
- 参考スコア(独自算出の注目度): 6.1003048508889535
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Dynamic pricing is a promising strategy to address the challenges of smart charging, as traditional time-of-use (ToU) rates and stationary pricing (SP) do not dynamically react to changes in operating conditions, reducing revenue for charging station (CS) vendors and affecting grid stability. Previous studies evaluated single objectives or linear combinations of objectives for EV CS pricing solutions, simplifying trade-offs and preferences among objectives. We develop a novel formulation for the dynamic pricing problem by addressing multiple conflicting objectives efficiently instead of solely focusing on one objective or metric, as in earlier works. We find optimal trade-offs or Pareto solutions efficiently using Non-dominated Sorting Genetic Algorithms (NSGA) II and NSGA III. A dynamic pricing model quantifies the relationship between demand and price while simultaneously solving multiple conflicting objectives, such as revenue, quality of service (QoS), and peak-to-average ratios (PAR). A single method can only address some of the above aspects of dynamic pricing comprehensively. We present a three-part dynamic pricing approach using a Bayesian model, multi-objective optimization, and multi-criteria decision-making (MCDM) using pseudo-weight vectors. To address the research gap in CS pricing, our method selects solutions using revenue, QoS, and PAR metrics simultaneously. Two California charging sites' real-world data validates our approach.
- Abstract(参考訳): 動的価格設定は、従来の時間帯(ToU)レートと定常価格(SP)が動作条件の変化に動的に反応せず、充電ステーション(CS)ベンダーの収益が減少し、グリッド安定性に影響を与えるため、スマート充電の課題に対処するための有望な戦略である。
従来の研究では、EV CS価格ソリューションの目的の単一目的または線形組み合わせを評価し、目的間のトレードオフと嗜好を簡素化した。
本稿では,複数の競合する目的を,従来の研究のように1つの目的やメートル法にのみ焦点をあてるのではなく,効率的に対処することで,動的価格問題の新たな定式化を行う。
NSGA (Non-Maninated Sorting Genetic Algorithm) II と NSGA III を用いて最適なトレードオフやパレートの解を求める。
動的価格モデルでは、需要と価格の関係を定量化するとともに、収益、サービス品質(QoS)、平均値(PAR)といった複数の相反する目標を同時に解決する。
シングルメソッドは、動的な価格設定の上記の側面のいくつかに包括的に対処するしかありません。
本稿では,ベイズモデル,多目的最適化,および擬似重みベクトルを用いたマルチ基準決定(MCDM)を用いた3部動的価格設定手法を提案する。
CS価格における研究ギャップを解決するため,当社の手法は収益,QoS,PARのメトリクスを同時に利用したソリューションを選択する。
カリフォルニアの2つの充電サイトの実際のデータから、私たちのアプローチが検証できます。
関連論文リスト
- Dual-Agent Deep Reinforcement Learning for Dynamic Pricing and Replenishment [15.273192037219077]
不整合決定周波数下での動的価格設定と補充問題について検討する。
我々は、包括的な市場データに基づいてトレーニングされた決定木に基づく機械学習アプローチを統合する。
このアプローチでは、2つのエージェントが価格と在庫を処理し、さまざまなスケールで更新される。
論文 参考訳(メタデータ) (2024-10-28T15:12:04Z) - End-to-End Cost-Effective Incentive Recommendation under Budget Constraint with Uplift Modeling [12.160403526724476]
本稿では,予算制約下でのエンド・ツー・エンド・エンド・コスト・エフェクティブ・インセンティブ・レコメンデーション(E3IR)モデルを提案する。
具体的には、アップリフト予測モジュールと微分可能なアロケーションモジュールの2つのモジュールから構成される。
E3IRは既存の2段階アプローチに比べてアロケーション性能が向上する。
論文 参考訳(メタデータ) (2024-08-21T13:48:00Z) - A Primal-Dual Online Learning Approach for Dynamic Pricing of Sequentially Displayed Complementary Items under Sale Constraints [54.46126953873298]
顧客に対して順次表示される補完アイテムの動的価格設定の問題に対処する。
各項目の価格を個別に最適化するのは効果がないため、補完項目のコヒーレントな価格ポリシーが不可欠である。
実世界のデータからランダムに生成した合成設定を用いて,我々のアプローチを実証的に評価し,制約違反や後悔の観点からその性能を比較した。
論文 参考訳(メタデータ) (2024-07-08T09:55:31Z) - Deep Pareto Reinforcement Learning for Multi-Objective Recommender Systems [60.91599969408029]
複数の目的を同時に最適化することは、レコメンデーションプラットフォームにとって重要なタスクです。
既存の多目的推薦システムは、そのような動的な関係を体系的に考慮していない。
論文 参考訳(メタデータ) (2024-07-04T02:19:49Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
本稿では,各データインスタンスのリソースを動的に割り当てることで,推論を高速化するスイッチブルな決定を提案する。
提案手法は, 同一の精度を維持しながら, 推論時のコスト低減に有効である。
論文 参考訳(メタデータ) (2024-05-07T17:44:54Z) - Controllable Preference Optimization: Toward Controllable Multi-Objective Alignment [103.12563033438715]
人工知能におけるアライメントは、モデル応答と人間の好みと値の一貫性を追求する。
既存のアライメント技術は、主に一方向であり、様々な目的に対して、最適以下のトレードオフと柔軟性の低下につながる。
制御可能な選好最適化(CPO)を導入し、異なる目的に対する選好スコアを明確に指定する。
論文 参考訳(メタデータ) (2024-02-29T12:12:30Z) - Learning Dynamic Selection and Pricing of Out-of-Home Deliveries [1.2289361708127877]
本稿では、畳み込みニューラルネットワークへの入力として、新しい時空間状態符号化を用いたアルゴリズムパイプラインであるOOH(DSPO)の動的選択と価格設定を提案する。
実世界のデータによって導かれた我々の広範な数値研究により、DSPOはOOH位置のない状況と比較して19.9%のコストを節約できることが明らかとなった。
我々は、OOHデリバリーのダイナミクスと価格戦略に影響された顧客の行動の間の複雑な相互作用に関する総合的な洞察を提供する。
論文 参考訳(メタデータ) (2023-11-23T12:55:10Z) - Dynamic value alignment through preference aggregation of multiple
objectives [0.0]
動的値アライメントの方法論として,アライメントすべき値が動的に変化する手法を提案する。
本稿では,複数の目的に対応するためにDeep $Q$-Learningを拡張し,単純化した2脚交点上で評価する。
論文 参考訳(メタデータ) (2023-10-09T17:07:26Z) - Structured Dynamic Pricing: Optimal Regret in a Global Shrinkage Model [50.06663781566795]
消費者の嗜好と価格感が時間とともに変化する動的モデルを考える。
我々は,モデルパラメータの順序を事前に把握している透視者と比較して,収益損失が予想される,後悔による動的価格政策の性能を計測する。
提案した政策の最適性を示すだけでなく,政策立案のためには,利用可能な構造情報を組み込むことが不可欠であることを示す。
論文 参考訳(メタデータ) (2023-03-28T00:23:23Z) - Multiple Dynamic Pricing for Demand Response with Adaptive
Clustering-based Customer Segmentation in Smart Grids [9.125875181760625]
本稿では,小売市場における需要応答に対する現実的なマルチダイナミックな価格設定手法を提案する。
提案するフレームワークは,実世界のデータセットに基づくシミュレーションによって評価される。
論文 参考訳(メタデータ) (2021-06-10T16:47:15Z) - MoTiAC: Multi-Objective Actor-Critics for Real-Time Bidding [47.555870679348416]
そこで本研究では,MoTiACというマルチエクティブ・アクタ・クリティカルスアルゴリズムを提案する。
従来のRLモデルとは異なり、提案されたMoTiACは複雑な入札環境で同時に多目的タスクを達成できる。
論文 参考訳(メタデータ) (2020-02-18T07:16:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。