Feature Aligning Few shot Learning Method Using Local Descriptors Weighted Rules
- URL: http://arxiv.org/abs/2408.14192v1
- Date: Mon, 26 Aug 2024 11:36:38 GMT
- Title: Feature Aligning Few shot Learning Method Using Local Descriptors Weighted Rules
- Authors: Bingchen Yan,
- Abstract summary: Few-shot classification involves identifying new categories using a limited number of labeled samples.
This paper proposes a Feature Aligning Few-shot Learning Method Using Local Descriptors Weighted Rules (FAFD-LDWR)
It innovatively introduces a cross-normalization method into few-shot image classification to preserve the discriminative information of local descriptors as much as possible; and enhances classification performance by aligning key local descriptors of support and query sets to remove background noise.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot classification involves identifying new categories using a limited number of labeled samples. Current few-shot classification methods based on local descriptors primarily leverage underlying consistent features across visible and invisible classes, facing challenges including redundant neighboring information, noisy representations, and limited interpretability. This paper proposes a Feature Aligning Few-shot Learning Method Using Local Descriptors Weighted Rules (FAFD-LDWR). It innovatively introduces a cross-normalization method into few-shot image classification to preserve the discriminative information of local descriptors as much as possible; and enhances classification performance by aligning key local descriptors of support and query sets to remove background noise. FAFD-LDWR performs excellently on three benchmark datasets , outperforming state-of-the-art methods in both 1-shot and 5-shot settings. The designed visualization experiments also demonstrate FAFD-LDWR's improvement in prediction interpretability.
Related papers
- Local Descriptors Weighted Adaptive Threshold Filtering For Few-Shot Learning [0.0]
Few-shot image classification is a challenging task in the field of machine learning.
We propose an innovative weighted adaptive threshold filtering (WATF) strategy for local descriptors.
Our method maintains a simple and lightweight design philosophy without additional learnable parameters.
arXiv Detail & Related papers (2024-08-28T16:36:23Z) - Learning More Discriminative Local Descriptors for Few-shot Learning [0.0]
We propose a Discriminative Local Descriptors Attention (DLDA) model that adaptively selects the representative local descriptors.
We modify the traditional $k$-NN classification model by adjusting the weights of the $k$ nearest neighbors according to their distances from the query point.
arXiv Detail & Related papers (2023-05-15T15:33:55Z) - Multi-modal Prompting for Low-Shot Temporal Action Localization [95.19505874963751]
We consider the problem of temporal action localization under low-shot (zero-shot & few-shot) scenario.
We adopt a Transformer-based two-stage action localization architecture with class-agnostic action proposal, followed by open-vocabulary classification.
arXiv Detail & Related papers (2023-03-21T10:40:13Z) - Learning Confident Classifiers in the Presence of Label Noise [5.829762367794509]
This paper proposes a probabilistic model for noisy observations that allows us to build a confident classification and segmentation models.
Our experiments show that our algorithm outperforms state-of-the-art solutions for the considered classification and segmentation problems.
arXiv Detail & Related papers (2023-01-02T04:27:25Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
We propose SCARF, a technique for contrastive learning, where views are formed by corrupting a random subset of features.
We show that SCARF complements existing strategies and outperforms alternatives like autoencoders.
arXiv Detail & Related papers (2021-06-29T08:08:33Z) - Revisiting Few-shot Relation Classification: Evaluation Data and
Classification Schemes [57.34346419239118]
We propose a novel methodology for deriving more realistic few-shot test data from available datasets for supervised RC.
This yields a new challenging benchmark for FSL RC, on which state of the art models show poor performance.
We propose a novel classification scheme, in which the NOTA category is represented as learned vectors.
arXiv Detail & Related papers (2021-04-17T08:16:49Z) - Revisiting Deep Local Descriptor for Improved Few-Shot Classification [56.74552164206737]
We show how one can improve the quality of embeddings by leveraging textbfDense textbfClassification and textbfAttentive textbfPooling.
We suggest to pool feature maps by applying attentive pooling instead of the widely used global average pooling (GAP) to prepare embeddings for few-shot classification.
arXiv Detail & Related papers (2021-03-30T00:48:28Z) - Match Them Up: Visually Explainable Few-shot Image Classification [27.867833878756553]
Few-shot learning is usually based on an assumption that the pre-trained knowledge can be obtained from base (seen) categories and can be well transferred to novel (unseen) categories.
In this paper, we reveal a new way to perform FSL for image classification, using visual representations from the backbone model and weights generated by a newly-emerged explainable classifier.
Experimental results prove that the proposed method can achieve both good accuracy and satisfactory explainability on three mainstream datasets.
arXiv Detail & Related papers (2020-11-25T05:47:35Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - Self-Supervised Tuning for Few-Shot Segmentation [82.32143982269892]
Few-shot segmentation aims at assigning a category label to each image pixel with few annotated samples.
Existing meta-learning method tends to fail in generating category-specifically discriminative descriptor when the visual features extracted from support images are marginalized in embedding space.
This paper presents an adaptive framework tuning, in which the distribution of latent features across different episodes is dynamically adjusted based on a self-segmentation scheme.
arXiv Detail & Related papers (2020-04-12T03:53:53Z) - Weakly-supervised Object Localization for Few-shot Learning and
Fine-grained Few-shot Learning [0.5156484100374058]
Few-shot learning aims to learn novel visual categories from very few samples.
We propose a Self-Attention Based Complementary Module (SAC Module) to fulfill the weakly-supervised object localization.
We also produce the activated masks for selecting discriminative deep descriptors for few-shot classification.
arXiv Detail & Related papers (2020-03-02T14:07:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.