Local Descriptors Weighted Adaptive Threshold Filtering For Few-Shot Learning
- URL: http://arxiv.org/abs/2408.15924v1
- Date: Wed, 28 Aug 2024 16:36:23 GMT
- Title: Local Descriptors Weighted Adaptive Threshold Filtering For Few-Shot Learning
- Authors: Bingchen Yan,
- Abstract summary: Few-shot image classification is a challenging task in the field of machine learning.
We propose an innovative weighted adaptive threshold filtering (WATF) strategy for local descriptors.
Our method maintains a simple and lightweight design philosophy without additional learnable parameters.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot image classification is a challenging task in the field of machine learning, involving the identification of new categories using a limited number of labeled samples. In recent years, methods based on local descriptors have made significant progress in this area. However, the key to improving classification accuracy lies in effectively filtering background noise and accurately selecting critical local descriptors highly relevant to image category information. To address this challenge, we propose an innovative weighted adaptive threshold filtering (WATF) strategy for local descriptors. This strategy can dynamically adjust based on the current task and image context, thereby selecting local descriptors most relevant to the image category. This enables the model to better focus on category-related information while effectively mitigating interference from irrelevant background regions. To evaluate the effectiveness of our method, we adopted the N-way K-shot experimental framework. Experimental results show that our method not only improves the clustering effect of selected local descriptors but also significantly enhances the discriminative ability between image categories. Notably, our method maintains a simple and lightweight design philosophy without introducing additional learnable parameters. This feature ensures consistency in filtering capability during both training and testing phases, further enhancing the reliability and practicality of the method.
Related papers
- Feature Aligning Few shot Learning Method Using Local Descriptors Weighted Rules [0.0]
Few-shot classification involves identifying new categories using a limited number of labeled samples.
This paper proposes a Feature Aligning Few-shot Learning Method Using Local Descriptors Weighted Rules (FAFD-LDWR)
It innovatively introduces a cross-normalization method into few-shot image classification to preserve the discriminative information of local descriptors as much as possible; and enhances classification performance by aligning key local descriptors of support and query sets to remove background noise.
arXiv Detail & Related papers (2024-08-26T11:36:38Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
We study a practical problem of Domain Generalization under Category Shift (DGCS)
It aims to simultaneously detect unknown-class samples and classify known-class samples in the target domains.
Compared to prior DG works, we face two new challenges: 1) how to learn the concept of unknown'' during training with only source known-class samples, and 2) how to adapt the source-trained model to unseen environments.
arXiv Detail & Related papers (2023-10-07T07:53:12Z) - Active Weighted Aging Ensemble for Drifted Data Stream Classification [2.277447144331876]
Concept drift destabilizes the performance of the classification model and seriously degrades its quality.
The proposed method has been evaluated through computer experiments using both real and generated data streams.
The results confirm the high quality of the proposed algorithm over state-of-the-art methods.
arXiv Detail & Related papers (2021-12-19T13:52:53Z) - Region-level Active Learning for Cluttered Scenes [60.93811392293329]
We introduce a new strategy that subsumes previous Image-level and Object-level approaches into a generalized, Region-level approach.
We show that this approach significantly decreases labeling effort and improves rare object search on realistic data with inherent class-imbalance and cluttered scenes.
arXiv Detail & Related papers (2021-08-20T14:02:38Z) - Learning Dynamic Alignment via Meta-filter for Few-shot Learning [94.41887992982986]
Few-shot learning aims to recognise new classes by adapting the learned knowledge with extremely limited few-shot (support) examples.
We learn a dynamic alignment, which can effectively highlight both query regions and channels according to different local support information.
The resulting framework establishes the new state-of-the-arts on major few-shot visual recognition benchmarks.
arXiv Detail & Related papers (2021-03-25T03:29:33Z) - Re-rank Coarse Classification with Local Region Enhanced Features for
Fine-Grained Image Recognition [22.83821575990778]
We re-rank the TopN classification results by using the local region enhanced embedding features to improve the Top1 accuracy.
To learn more effective semantic global features, we design a multi-level loss over an automatically constructed hierarchical category structure.
Our method achieves state-of-the-art performance on three benchmarks: CUB-200-2011, Stanford Cars, and FGVC Aircraft.
arXiv Detail & Related papers (2021-02-19T11:30:25Z) - Visualization of Supervised and Self-Supervised Neural Networks via
Attribution Guided Factorization [87.96102461221415]
We develop an algorithm that provides per-class explainability.
In an extensive battery of experiments, we demonstrate the ability of our methods to class-specific visualization.
arXiv Detail & Related papers (2020-12-03T18:48:39Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - Attentive CutMix: An Enhanced Data Augmentation Approach for Deep
Learning Based Image Classification [58.20132466198622]
We propose Attentive CutMix, a naturally enhanced augmentation strategy based on CutMix.
In each training iteration, we choose the most descriptive regions based on the intermediate attention maps from a feature extractor.
Our proposed method is simple yet effective, easy to implement and can boost the baseline significantly.
arXiv Detail & Related papers (2020-03-29T15:01:05Z) - Weakly-supervised Object Localization for Few-shot Learning and
Fine-grained Few-shot Learning [0.5156484100374058]
Few-shot learning aims to learn novel visual categories from very few samples.
We propose a Self-Attention Based Complementary Module (SAC Module) to fulfill the weakly-supervised object localization.
We also produce the activated masks for selecting discriminative deep descriptors for few-shot classification.
arXiv Detail & Related papers (2020-03-02T14:07:05Z) - Progressive Local Filter Pruning for Image Retrieval Acceleration [43.97722250091591]
We propose a new Progressive Local Filter Pruning (PLFP) method for image retrieval acceleration.
Specifically, layer by layer, we analyze the local geometric properties of each filter and select the one that can be replaced by the neighbors.
In this way, the representation ability of the model is preserved.
arXiv Detail & Related papers (2020-01-24T04:28:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.