論文の概要: Fact Probability Vector Based Goal Recognition
- arxiv url: http://arxiv.org/abs/2408.14224v1
- Date: Mon, 26 Aug 2024 12:37:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 14:01:29.238621
- Title: Fact Probability Vector Based Goal Recognition
- Title(参考訳): Fact Probability Vector を用いたゴール認識
- Authors: Nils Wilken, Lea Cohausz, Christian Bartelt, Heiner Stuckenschmidt,
- Abstract要約: 観測された事実と予測される確率を比較することを含む新たなゴール認識手法を提案する。
提案手法は,これらの確率と観測された事実を実ベクトル空間にマッピングし,ポテンシャル目標の値を計算する。
- 参考スコア(独自算出の注目度): 8.33719125866664
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new approach to goal recognition that involves comparing observed facts with their expected probabilities. These probabilities depend on a specified goal g and initial state s0. Our method maps these probabilities and observed facts into a real vector space to compute heuristic values for potential goals. These values estimate the likelihood of a given goal being the true objective of the observed agent. As obtaining exact expected probabilities for observed facts in an observation sequence is often practically infeasible, we propose and empirically validate a method for approximating these probabilities. Our empirical results show that the proposed approach offers improved goal recognition precision compared to state-of-the-art techniques while reducing computational complexity.
- Abstract(参考訳): 観測された事実と予測される確率を比較することを含む新たなゴール認識手法を提案する。
これらの確率は、指定されたゴール g と初期状態 s0 に依存する。
提案手法は,これらの確率と観測された事実を実ベクトル空間にマッピングし,潜在的な目標に対するヒューリスティックな値を計算する。
これらの値は、観測されたエージェントの真の目的である与えられたゴールの確率を推定する。
観測シーケンスにおける観測事実の正確な確率を求めることは現実的に不可能であることが多いので,これらの確率を近似する手法を提案し,実証的に検証する。
実験の結果,提案手法は,計算複雑性を低減しつつ,最先端技術と比較して目標認識精度が向上していることがわかった。
関連論文リスト
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
本稿では、離散可観測変数に対する因果影響クエリに応答する代替パラダイムを提案する。
観測データから直接因果ベイズネットワークとその共起潜伏変数を学習する。
本手法は, 推定手法よりも有効であることを示す。
論文 参考訳(メタデータ) (2024-08-26T08:39:09Z) - Tackling Missing Values in Probabilistic Wind Power Forecasting: A
Generative Approach [1.384633930654651]
そこで本研究では,欠落した値の処理と目標の予測を無関心に行い,未知の値を同時に予測することを提案する。
従来の「インプット、予測」パイプラインと比較して、提案手法は連続的なランク付け確率スコアにおいてより良い性能を達成する。
論文 参考訳(メタデータ) (2024-03-06T11:38:08Z) - Deep Probability Estimation [14.659180336823354]
深層ニューラルネットワークを用いた高次元データからの確率推定について検討する。
この研究の目的は、ディープニューラルネットワークを用いた高次元データからの確率推定を調査することである。
合成データおよび実世界の3つの確率推定タスクにおける既存手法の評価を行った。
論文 参考訳(メタデータ) (2021-11-21T03:55:50Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - Uncertainty Surrogates for Deep Learning [17.868995105624023]
不確実性サーロゲートを用いて深層ネットワークにおける予測不確実性を推定する新しい方法を紹介します。
これらのサーロゲートは、事前定義されたパターンに一致させるように強制される深いネットワークの衝動層の特徴です。
予測の不確実性や分布異常検出の推定に,本手法の有用性を示す。
論文 参考訳(メタデータ) (2021-04-16T14:50:28Z) - Inferring Agents Preferences as Priors for Probabilistic Goal
Recognition [22.045476322820324]
確率論的解釈を用いてランドマークに基づく目標認識を拡張するモデルを提供する。
我々は,本モデルが目標を効果的に認識するだけでなく,正しい先行確率分布を推定できることを実証的に示した。
論文 参考訳(メタデータ) (2021-02-23T16:53:23Z) - Handling Epistemic and Aleatory Uncertainties in Probabilistic Circuits [18.740781076082044]
確率的推論の大規模クラスを扱うアプローチの背後にある独立性の仮定を克服する手法を提案する。
ベイズ学習のアルゴリズムは、完全な観察にもかかわらず、スパースから提供します。
そのような回路の各リーフは、不確実な確率を表すエレガントなフレームワークを提供するベータ分散ランダム変数でラベル付けされています。
論文 参考訳(メタデータ) (2021-02-22T10:03:15Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
ニューラルネットワークの潜在表現の分布は、アウト・オブ・ディストリビューション(OOD)データの検出に成功している。
本研究は、この分布が、モデルの不確実性と相関しているかどうかを考察し、新しい入力に一般化する能力を示す。
論文 参考訳(メタデータ) (2020-12-05T17:30:35Z) - CoinDICE: Off-Policy Confidence Interval Estimation [107.86876722777535]
強化学習における高信頼行動非依存のオフ政治評価について検討する。
様々なベンチマークにおいて、信頼区間推定が既存の手法よりも厳密で精度が高いことが示されている。
論文 参考訳(メタデータ) (2020-10-22T12:39:11Z) - Evaluating probabilistic classifiers: Reliability diagrams and score
decompositions revisited [68.8204255655161]
確率的に統計的に一貫性があり、最適に結合し、再現可能な信頼性図を自動生成するCORP手法を導入する。
コーパスは非パラメトリックアイソトニック回帰に基づいており、プール・アジャセント・ヴァイオレータ(PAV)アルゴリズムによって実装されている。
論文 参考訳(メタデータ) (2020-08-07T08:22:26Z) - Combining Task Predictors via Enhancing Joint Predictability [53.46348489300652]
そこで本研究では,目標予測能力に基づいて参照の関連性を測定し,その関連性を高めるための新しい予測器組合せアルゴリズムを提案する。
提案アルゴリズムはベイズフレームワークを用いて,すべての参照の関連性について共同で評価する。
視覚属性ランキングとマルチクラス分類シナリオから得られた実世界の7つのデータセットの実験に基づいて,本アルゴリズムが性能向上に寄与し,既存の予測器の組み合わせアプローチの適用範囲を広くすることを示した。
論文 参考訳(メタデータ) (2020-07-15T21:58:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。