Gallery-Aware Uncertainty Estimation For Open-Set Face Recognition
- URL: http://arxiv.org/abs/2408.14229v1
- Date: Mon, 26 Aug 2024 12:44:17 GMT
- Title: Gallery-Aware Uncertainty Estimation For Open-Set Face Recognition
- Authors: Leonid Erlygin, Alexey Zaytsev,
- Abstract summary: In open-set face recognition, one seeks to classify an image, which could also be unknown.
Here, the low variance of probabilistic embedding does not imply a low error probability.
We propose a method aware of two sources of ambiguity in the open-set recognition system.
- Score: 2.6862667248315386
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately estimating image quality and model robustness improvement are critical challenges in unconstrained face recognition, which can be addressed through uncertainty estimation via probabilistic face embeddings. Previous research mainly focused on uncertainty estimation in face verification, leaving the open-set face recognition task underexplored. In open-set face recognition, one seeks to classify an image, which could also be unknown. Here, the low variance of probabilistic embedding does not imply a low error probability: an image embedding could be close to several classes in a gallery, thus yielding high uncertainty. We propose a method aware of two sources of ambiguity in the open-set recognition system: (1) the gallery uncertainty caused by overlapping classes and (2) the uncertainty of the face embeddings. To detect both types, we use a Bayesian probabilistic model of embedding distribution, which provides a principled uncertainty estimate. Challenging open-set face recognition datasets, such as IJB-C, serve as a testbed for our method. We also propose a new open-set recognition protocol for whale and dolphin identification. The proposed approach better identifies recognition errors than uncertainty estimation methods based solely on image quality.
Related papers
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - Certainly Uncertain: A Benchmark and Metric for Multimodal Epistemic and Aleatoric Awareness [106.52630978891054]
We present a taxonomy of uncertainty specific to vision-language AI systems.
We also introduce a new metric confidence-weighted accuracy, that is well correlated with both accuracy and calibration error.
arXiv Detail & Related papers (2024-07-02T04:23:54Z) - Cost-Sensitive Uncertainty-Based Failure Recognition for Object Detection [1.8990839669542954]
We propose a cost-sensitive framework for object detection tailored to user-defined budgets.
We derive minimum thresholding requirements to prevent performance degradation.
We automate and optimize the thresholding process to maximize the failure recognition rate.
arXiv Detail & Related papers (2024-04-26T14:03:55Z) - Benchmarking Probabilistic Deep Learning Methods for License Plate
Recognition [11.772116128679116]
We propose to model the prediction uncertainty for license plate recognition explicitly.
Experiments on synthetic noisy or blurred low-resolution images show that the predictive uncertainty reliably finds wrong predictions.
arXiv Detail & Related papers (2023-02-02T21:37:42Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - ScaleFace: Uncertainty-aware Deep Metric Learning [2.7383076864024636]
We propose an approach for deep metric learning that allows direct estimation of the uncertainty with almost no additional computational cost.
The developed textitScaleFace algorithm uses trainable scale values that modify similarities in the space of embeddings.
We provide comprehensive experiments on face recognition tasks that show the superior performance of ScaleFace compared to other uncertainty-aware face recognition approaches.
arXiv Detail & Related papers (2022-09-05T10:27:16Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - An Uncertainty Estimation Framework for Probabilistic Object Detection [5.83620245905973]
We introduce a new technique that combines two popular methods to estimate uncertainty in object detection.
Our framework employs deep ensembles and Monte Carlo dropout for approximating predictive uncertainty.
arXiv Detail & Related papers (2021-06-28T22:29:59Z) - Harnessing Unrecognizable Faces for Face Recognition [87.80037162457427]
We propose a measure of recognizability of a face image, implemented by a deep neural network trained using mostly recognizable identities.
We show that accounting for recognizability reduces error rate of single-image face recognition by 58% at FAR=1e-5.
arXiv Detail & Related papers (2021-06-08T05:25:03Z) - Inducing Predictive Uncertainty Estimation for Face Recognition [102.58180557181643]
We propose a method for generating image quality training data automatically from'mated-pairs' of face images.
We use the generated data to train a lightweight Predictive Confidence Network, termed as PCNet, for estimating the confidence score of a face image.
arXiv Detail & Related papers (2020-09-01T17:52:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.