論文の概要: HyperSBINN: A Hypernetwork-Enhanced Systems Biology-Informed Neural Network for Efficient Drug Cardiosafety Assessment
- arxiv url: http://arxiv.org/abs/2408.14266v1
- Date: Mon, 26 Aug 2024 13:40:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 13:51:27.181959
- Title: HyperSBINN: A Hypernetwork-Enhanced Systems Biology-Informed Neural Network for Efficient Drug Cardiosafety Assessment
- Title(参考訳): HyperSBINN: 効率的な薬物心安全評価のためのハイパーネットワーク強化システム生物学インフォームドニューラルネットワーク
- Authors: Inass Soukarieh, Gerhard Hessler, Hervé Minoux, Marcel Mohr, Friedemann Schmidt, Jan Wenzel, Pierre Barbillon, Hugo Gangloff, Pierre Gloaguen,
- Abstract要約: メタラーニング技術とシステム生物学インフォームドニューラルネットワーク(SBINN)を組み合わせることで、心臓活動電位のパラメータ化モデルを解く新しい手法を提案する。
提案手法であるHyper SBINNは、異なる濃度における各種化合物の心活動電位への影響を予測するという課題を効果的に解決する。
- 参考スコア(独自算出の注目度): 0.46435896353765527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mathematical modeling in systems toxicology enables a comprehensive understanding of the effects of pharmaceutical substances on cardiac health. However, the complexity of these models limits their widespread application in early drug discovery. In this paper, we introduce a novel approach to solving parameterized models of cardiac action potentials by combining meta-learning techniques with Systems Biology-Informed Neural Networks (SBINNs). The proposed method, HyperSBINN, effectively addresses the challenge of predicting the effects of various compounds at different concentrations on cardiac action potentials, outperforming traditional differential equation solvers in speed. Our model efficiently handles scenarios with limited data and complex parameterized differential equations. The HyperSBINN model demonstrates robust performance in predicting APD90 values, indicating its potential as a reliable tool for modeling cardiac electrophysiology and aiding in preclinical drug development. This framework represents an advancement in computational modeling, offering a scalable and efficient solution for simulating and understanding complex biological systems.
- Abstract(参考訳): システム毒性学における数学的モデリングは、医薬品が心臓の健康に及ぼす影響を包括的に理解することを可能にする。
しかし、これらのモデルの複雑さは、初期の薬物発見における広範囲の応用を制限する。
本稿では,メタラーニング手法とシステム生物学情報ニューラルネットワーク(SBINN)を組み合わせることで,心臓活動電位のパラメータ化モデルを構築する新しい手法を提案する。
提案手法であるHyperSBINNは, 種々の化合物が心活動電位に及ぼす影響を予測し, 従来の微分方程式解法よりも高速であることを示す。
我々のモデルは、限られたデータと複雑なパラメータ化微分方程式でシナリオを効率的に処理する。
HyperSBINNモデルは、PD90値の予測において堅牢な性能を示し、心電気生理学をモデル化し、前臨床薬開発に寄与する信頼性の高いツールとしての可能性を示している。
このフレームワークは、複雑な生物学的システムをシミュレートし理解するためのスケーラブルで効率的なソリューションを提供する、計算モデリングの進歩を表している。
関連論文リスト
- CMINNs: Compartment Model Informed Neural Networks -- Unlocking Drug Dynamics [1.7614751781649955]
本稿では,PKとPK-PDモデリングを統合した革新的な手法を提案する。
提案手法は物理インフォームドニューラルネットワーク(PINN)と分数物理インフォームドニューラルネットワーク(fPINN)を用いる。
その結果、この手法は、薬物吸収率と分散遅延応答のモデル描写を著しく強化する堅牢なフレームワークを提供することを示した。
論文 参考訳(メタデータ) (2024-09-19T15:01:33Z) - Beyond Conventional Parametric Modeling: Data-Driven Framework for Estimation and Prediction of Time Activity Curves in Dynamic PET Imaging [4.097001355074171]
本研究では、リアクション拡散システムにインスパイアされた、革新的なデータ駆動型ニューラルネットワークベースのフレームワークを紹介する。
本手法は, dPETのTACに適応的に適合し, 観測データから拡散係数と反応項を直接キャリブレーションすることができる。
論文 参考訳(メタデータ) (2024-05-31T17:09:07Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Discovering intrinsic multi-compartment pharmacometric models using Physics Informed Neural Networks [0.0]
我々は、純粋にデータ駆動型ニューラルネットワークモデルであるPKINNを紹介する。
PKINNは、本質的なマルチコンパートメントベースの薬理学構造を効率的に発見し、モデル化する。
得られたモデルは、シンボリック回帰法によって解釈可能であり、説明可能である。
論文 参考訳(メタデータ) (2024-04-30T19:31:31Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
AIによる薬物発見の大きな課題は、高品質なデータの不足である。
薬物動態の4つの重要なパラメータを同時に予測するPEMAL法を開発した。
実験の結果,PEMALは一般的なグラフニューラルネットワークに比べてデータ需要を著しく低減することがわかった。
論文 参考訳(メタデータ) (2024-04-16T07:42:55Z) - AI-Aristotle: A Physics-Informed framework for Systems Biology Gray-Box
Identification [1.8434042562191815]
本稿では,システム生物学におけるパラメータ推定と物理識別の欠如 (グレーボックス) のための新しい枠組みを提案する。
提案するフレームワーク - AI-Aristotle は,EXtreme Theory of Functional Connection (X-TFC) ドメイン分割と物理インフォームドニューラルネットワーク (PINN) を組み合わせたものだ。
システム生物学における2つのベンチマーク問題に基づいて,AI-Aristotleの精度,速度,柔軟性,堅牢性を検証した。
論文 参考訳(メタデータ) (2023-09-29T14:45:51Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
ニューラル固有微分方程式アルゴリズム(NESDE)を導入する。
NESDEは個別化モデリング、新しい治療ポリシーへの調整可能な一般化、高速で連続的でクローズドな予測を提供する。
本研究は, 総合的・現実的な医療問題におけるNESDEの堅牢性を実証し, 学習力学を用いて, 模擬医療体育環境の公開を行う。
論文 参考訳(メタデータ) (2023-06-24T17:01:51Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
潜在ハイブリッドモデル(LHM)は、専門家が設計したODEのシステムと機械学習したNeural ODEを統合し、システムのダイナミクスを完全に記述する。
新型コロナウイルス患者のLHMと実世界の集中治療データについて検討した。
論文 参考訳(メタデータ) (2021-06-05T11:42:45Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z) - Deep learning-based reduced order models in cardiac electrophysiology [0.0]
深層学習 (DL) アルゴリズムを利用して, 高精度かつ効率的な縮小順序モデル (ROM) を得る新しい非線形手法を提案する。
我々のDLアプローチは、ディープフィードフォワードニューラルネットワーク(NN)と畳み込みオートエンコーダ(AE)を組み合わせたものです。
提案するDL-ROMフレームワークは, パラメタライズド電気生理学問題の解法を効率よく提供できることを示し, 病理症例における多シナリオ解析を可能にした。
論文 参考訳(メタデータ) (2020-06-02T23:05:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。