論文の概要: CMINNs: Compartment Model Informed Neural Networks -- Unlocking Drug Dynamics
- arxiv url: http://arxiv.org/abs/2409.12998v1
- Date: Thu, 19 Sep 2024 15:01:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 12:25:44.089565
- Title: CMINNs: Compartment Model Informed Neural Networks -- Unlocking Drug Dynamics
- Title(参考訳): CMINNs: 比較モデルインフォームドニューラルネットワーク -- 薬のダイナミクスを解き放つ
- Authors: Nazanin Ahmadi Daryakenari, Shupeng Wang, George Karniadakis,
- Abstract要約: 本稿では,PKとPK-PDモデリングを統合した革新的な手法を提案する。
提案手法は物理インフォームドニューラルネットワーク(PINN)と分数物理インフォームドニューラルネットワーク(fPINN)を用いる。
その結果、この手法は、薬物吸収率と分散遅延応答のモデル描写を著しく強化する堅牢なフレームワークを提供することを示した。
- 参考スコア(独自算出の注目度): 1.7614751781649955
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the field of pharmacokinetics and pharmacodynamics (PKPD) modeling, which plays a pivotal role in the drug development process, traditional models frequently encounter difficulties in fully encapsulating the complexities of drug absorption, distribution, and their impact on targets. Although multi-compartment models are frequently utilized to elucidate intricate drug dynamics, they can also be overly complex. To generalize modeling while maintaining simplicity, we propose an innovative approach that enhances PK and integrated PK-PD modeling by incorporating fractional calculus or time-varying parameter(s), combined with constant or piecewise constant parameters. These approaches effectively model anomalous diffusion, thereby capturing drug trapping and escape rates in heterogeneous tissues, which is a prevalent phenomenon in drug dynamics. Furthermore, this method provides insight into the dynamics of drug in cancer in multi-dose administrations. Our methodology employs a Physics-Informed Neural Network (PINN) and fractional Physics-Informed Neural Networks (fPINNs), integrating ordinary differential equations (ODEs) with integer/fractional derivative order from compartmental modeling with neural networks. This integration optimizes parameter estimation for variables that are time-variant, constant, piecewise constant, or related to the fractional derivative order. The results demonstrate that this methodology offers a robust framework that not only markedly enhances the model's depiction of drug absorption rates and distributed delayed responses but also unlocks different drug-effect dynamics, providing new insights into absorption rates, anomalous diffusion, drug resistance, peristance and pharmacokinetic tolerance, all within a system of just two (fractional) ODEs with explainable results.
- Abstract(参考訳): 薬物開発プロセスにおいて重要な役割を担う薬物動態・薬物力学(PKPD)モデリングの分野では、伝統的なモデルは、薬物吸収、分布、およびそれらの標的に対する影響の複雑さを完全にカプセル化するのにしばしば困難に直面する。
マルチコンパートメントモデルは複雑な薬物動態を解明するために頻繁に使用されるが、過度に複雑になることもある。
単純さを維持しながらモデリングを一般化するために,分数計算や時間変化パラメータを定値パラメータや分数定数パラメータと組み合わせることで,PKとPK-PDモデリングを統合した革新的な手法を提案する。
これらのアプローチは、異常な拡散を効果的にモデル化し、薬物動態において顕著な現象である異種組織における薬物トラップと脱走率を捕捉する。
さらに、この方法は、がんにおける薬物の動態を多量投与で把握する。
提案手法では,物理インフォームドニューラルネットワーク (PINN) と分数次物理インフォームドニューラルネットワーク (fPINN) を併用し,従来の微分方程式 (ODE) と整数/屈折微分次数との結合を,ニューラルネットワークを用いたコンパートメンタルモデリングから行う。
この積分は、時間変量、定数、断片定数、あるいは分数微分順序に関連する変数のパラメータ推定を最適化する。
この手法は, 薬物吸収率, 分散遅延応答の描写を顕著に促進するだけでなく, 異なる薬物影響ダイナミクスを解き放ち, 吸収速度, 異常拡散, 薬剤抵抗, 持続性, 薬物動態耐性に対する新たな知見を提供する。
関連論文リスト
- HyperSBINN: A Hypernetwork-Enhanced Systems Biology-Informed Neural Network for Efficient Drug Cardiosafety Assessment [0.46435896353765527]
メタラーニング技術とシステム生物学インフォームドニューラルネットワーク(SBINN)を組み合わせることで、心臓活動電位のパラメータ化モデルを解く新しい手法を提案する。
提案手法であるHyper SBINNは、異なる濃度における各種化合物の心活動電位への影響を予測するという課題を効果的に解決する。
論文 参考訳(メタデータ) (2024-08-26T13:40:33Z) - Beyond Conventional Parametric Modeling: Data-Driven Framework for Estimation and Prediction of Time Activity Curves in Dynamic PET Imaging [4.097001355074171]
本研究では、リアクション拡散システムにインスパイアされた、革新的なデータ駆動型ニューラルネットワークベースのフレームワークを紹介する。
本手法は, dPETのTACに適応的に適合し, 観測データから拡散係数と反応項を直接キャリブレーションすることができる。
論文 参考訳(メタデータ) (2024-05-31T17:09:07Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Discovering intrinsic multi-compartment pharmacometric models using Physics Informed Neural Networks [0.0]
我々は、純粋にデータ駆動型ニューラルネットワークモデルであるPKINNを紹介する。
PKINNは、本質的なマルチコンパートメントベースの薬理学構造を効率的に発見し、モデル化する。
得られたモデルは、シンボリック回帰法によって解釈可能であり、説明可能である。
論文 参考訳(メタデータ) (2024-04-30T19:31:31Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
ニューラル固有微分方程式アルゴリズム(NESDE)を導入する。
NESDEは個別化モデリング、新しい治療ポリシーへの調整可能な一般化、高速で連続的でクローズドな予測を提供する。
本研究は, 総合的・現実的な医療問題におけるNESDEの堅牢性を実証し, 学習力学を用いて, 模擬医療体育環境の公開を行う。
論文 参考訳(メタデータ) (2023-06-24T17:01:51Z) - Generalized Neural Closure Models with Interpretability [28.269731698116257]
我々は、統合された神経部分遅延微分方程式の新規で汎用的な方法論を開発した。
マルコフ型および非マルコフ型ニューラルネットワーク(NN)の閉包パラメータ化を用いて, 偏微分方程式(PDE)における既存/低忠実度力学モデルを直接拡張する。
本研究では, 非線形波動, 衝撃波, 海洋酸性化モデルに基づく4つの実験セットを用いて, 新しい一般化ニューラルクロージャモデル(gnCMs)の枠組みを実証する。
論文 参考訳(メタデータ) (2023-01-15T21:57:43Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
潜在ハイブリッドモデル(LHM)は、専門家が設計したODEのシステムと機械学習したNeural ODEを統合し、システムのダイナミクスを完全に記述する。
新型コロナウイルス患者のLHMと実世界の集中治療データについて検討した。
論文 参考訳(メタデータ) (2021-06-05T11:42:45Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Neural Ordinary Differential Equations for Intervention Modeling [30.127870899307254]
現実世界のシステムは、しばしばシステムダイナミクスの変化を引き起こす外部の介入を伴います。
ニューラルODEと最近の多くの変種は、観察と介入を個別に適切にモデル化しないため、そのような介入をモデル化するのに適していない。
本稿では、2つのODE関数を別々に処理し、外部介入の効果を適切にモデル化する新しいニューラルODEベースのアプローチ(IMODE)を提案する。
論文 参考訳(メタデータ) (2020-10-16T10:55:12Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。