論文の概要: LLM-3D Print: Large Language Models To Monitor and Control 3D Printing
- arxiv url: http://arxiv.org/abs/2408.14307v1
- Date: Mon, 26 Aug 2024 14:38:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 13:41:26.233342
- Title: LLM-3D Print: Large Language Models To Monitor and Control 3D Printing
- Title(参考訳): LLM-3Dプリンティング:3Dプリンティングの監視と制御のための大規模言語モデル
- Authors: Yayati Jadhav, Peter Pak, Amir Barati Farimani,
- Abstract要約: 産業4.0は、デジタル化を推進し、添加性製造(AM)へのパラダイムシフトによって製造に革命をもたらした。
重要なAM技術であるFDMは、層間押出による最小限の材料廃棄物による、高度にカスタマイズされたコスト効率の高い製品の作成を可能にする。
本稿では,3Dプリンタとともに学習済みのLarge Language Models(LLM)を利用して,印刷欠陥の検出と対処を行うプロセス監視・制御フレームワークを提案する。
- 参考スコア(独自算出の注目度): 6.349503549199403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Industry 4.0 has revolutionized manufacturing by driving digitalization and shifting the paradigm toward additive manufacturing (AM). Fused Deposition Modeling (FDM), a key AM technology, enables the creation of highly customized, cost-effective products with minimal material waste through layer-by-layer extrusion, posing a significant challenge to traditional subtractive methods. However, the susceptibility of material extrusion techniques to errors often requires expert intervention to detect and mitigate defects that can severely compromise product quality. While automated error detection and machine learning models exist, their generalizability across diverse 3D printer setups, firmware, and sensors is limited, and deep learning methods require extensive labeled datasets, hindering scalability and adaptability. To address these challenges, we present a process monitoring and control framework that leverages pre-trained Large Language Models (LLMs) alongside 3D printers to detect and address printing defects. The LLM evaluates print quality by analyzing images captured after each layer or print segment, identifying failure modes and querying the printer for relevant parameters. It then generates and executes a corrective action plan. We validated the effectiveness of the proposed framework in identifying defects by comparing it against a control group of engineers with diverse AM expertise. Our evaluation demonstrated that LLM-based agents not only accurately identify common 3D printing errors, such as inconsistent extrusion, stringing, warping, and layer adhesion, but also effectively determine the parameters causing these failures and autonomously correct them without any need for human intervention.
- Abstract(参考訳): 業界 4.0 はデジタル化を推進し、追加製造業(AM)へのパラダイムシフトによって製造に革命をもたらした。
AM技術であるFused Deposition Modeling (FDM)は、層間押出による最小限の材料廃棄物による、高度にカスタマイズされたコスト効率の高い製品の作成を可能にする。
しかし、物質押出法が誤認されるには、製品の品質を著しく損なう可能性のある欠陥を検出し、軽減するための専門家の介入が必要となることが多い。
自動エラー検出と機械学習モデルが存在するが、様々な3Dプリンタのセットアップ、ファームウェア、センサーにまたがる一般化性は制限されており、ディープラーニング手法は広範なラベル付きデータセットを必要とし、スケーラビリティと適応性を妨げている。
これらの課題に対処するために,3Dプリンタとともに学習済みのLarge Language Models(LLM)を利用して,印刷欠陥を検出し,対処するプロセス監視・制御フレームワークを提案する。
LLMは、各層またはプリントセグメントから取得した画像を分析し、障害モードを特定し、関連するパラメータをプリンタに問い合わせることで、印刷品質を評価する。
その後、修正アクションプランを生成し実行します。
さまざまなAM専門知識を持つエンジニアのコントロールグループと比較し,欠陥を特定する上で,提案フレームワークの有効性を検証する。
LLMをベースとしたエージェントは, 押出, ストリング, ワープ, 層密着などの一般的な3次元印刷誤差を正確に識別するだけでなく, これらの故障の原因となるパラメータを効果的に決定し, 人的介入を必要とせずに自動補正する。
関連論文リスト
- Investigation on domain adaptation of additive manufacturing monitoring systems to enhance digital twin reusability [12.425166883814153]
機械学習(ML)ベースのモデリングを使用したデジタルツイン(DT)は、AMプロセスの監視と制御のためにデプロイできる。
メルトプールは、プロセス監視において最もよく見られる物理現象の1つである。
本稿では,AM DTの再利用性を高めるため,異なるAM設定間の知識伝達パイプラインを提案する。
論文 参考訳(メタデータ) (2024-09-19T13:54:01Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
大規模言語モデル(LLM)はますます強力になってきていますが、それでも顕著ですが微妙な弱点があります。
従来のベンチマークアプローチでは、特定のモデルの欠陥を徹底的に特定することはできない。
さまざまなタスクにまたがるLLMの弱点を自動的に露呈する統合フレームワークであるAutoDetectを導入する。
論文 参考訳(メタデータ) (2024-06-24T15:16:45Z) - 3D Face Modeling via Weakly-supervised Disentanglement Network joint Identity-consistency Prior [62.80458034704989]
切り離された制御因子を特徴とする3次元顔モデルの生成は、コンピュータビジョンやコンピュータグラフィックスの多様な応用において大きな可能性を秘めている。
従来の3D顔モデリング手法は、これらの要因を効果的に解消するために特定のラベルを要求するため、課題に直面している。
本稿では,WSDF(Wakly Supervised Disentanglement Framework)を導入し,過度に拘束的なラベル付けを必要とせず,制御可能な3次元顔モデルのトレーニングを容易にする。
論文 参考訳(メタデータ) (2024-04-25T11:50:47Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - An unsupervised approach towards promptable defect segmentation in laser-based additive manufacturing by Segment Anything [7.188573079798082]
我々は、最先端のビジョントランスフォーマー(ViT)ベースのファンデーションモデルを用いて、画像セグメンテーションのためのフレームワークを構築する。
我々は、ラベル付きデータを使わずに高精度に学習し、迅速なチューニングプロセスを導出する。
我々は、現在のレーザー添加物製造プロセスに革命をもたらす可能性のある、リアルタイムな異常検出パイプラインの構築を構想する。
論文 参考訳(メタデータ) (2023-12-07T06:03:07Z) - IT3D: Improved Text-to-3D Generation with Explicit View Synthesis [71.68595192524843]
本研究では、これらの問題に対処するために、明示的に合成されたマルチビュー画像を活用する新しい戦略を提案する。
我々のアプローチは、高画質画像を生成するために、LCDによって強化されたイメージ・ツー・イメージ・パイプラインを活用することである。
組込み判別器では、合成したマルチビュー画像は実データと見なされ、最適化された3Dモデルのレンダリングは偽データとして機能する。
論文 参考訳(メタデータ) (2023-08-22T14:39:17Z) - Distributional Instance Segmentation: Modeling Uncertainty and High
Confidence Predictions with Latent-MaskRCNN [77.0623472106488]
本稿では,潜在符号を用いた分散インスタンス分割モデルのクラスについて検討する。
ロボットピッキングへの応用として,高い精度を実現するための信頼性マスク手法を提案する。
本手法は,新たにリリースした曖昧なシーンのデータセットを含め,ロボットシステムにおける致命的なエラーを著しく低減できることを示す。
論文 参考訳(メタデータ) (2023-05-03T05:57:29Z) - Semi-Siamese Network for Robust Change Detection Across Different
Domains with Applications to 3D Printing [17.176767333354636]
本稿では3Dプリンティングプロセスにおける欠陥検出のための新しいセミ・シームズ深層学習モデルを提案する。
本モデルは,撮像装置の摂動に対して頑健でありながら,異なる領域からの異種画像の比較を可能にするように設計されている。
われわれのモデルでは、欠陥ローカライズ予測は標準のMacBook Proを使って1層あたり半秒未満で行うことができ、F1スコアは0.9以上である。
論文 参考訳(メタデータ) (2022-12-16T17:02:55Z) - An adaptive human-in-the-loop approach to emission detection of Additive
Manufacturing processes and active learning with computer vision [76.72662577101988]
In-situ monitoring and process control in Additive Manufacturing (AM) は大量の排出データを収集することを可能にする。
このデータは、3Dプリントされた部品の3Dおよび2D表現への入力として使用できる。
本研究の目的は,機械学習技術を用いた適応型ヒューマン・イン・ザ・ループ手法を提案することである。
論文 参考訳(メタデータ) (2022-12-12T15:11:18Z) - See Eye to Eye: A Lidar-Agnostic 3D Detection Framework for Unsupervised
Multi-Target Domain Adaptation [7.489722641968593]
本稿では,ライダー間における最先端3D検出器の性能伝達のための,教師なしマルチターゲットドメイン適応フレームワークであるSEEを提案する。
提案手法は,検出ネットワークに渡す前に,基礎となる形状を補間し,異なるライダーからの物体の走査パターンを正規化する。
我々は、SEEが公開データセット上で有効であること、最先端の成果を達成できること、そして、我々のフレームワークの産業的応用を証明するために、新しい高解像度ライダーに定量的な結果を提供することを実証する。
論文 参考訳(メタデータ) (2021-11-17T23:46:47Z) - Towards Smart Monitored AM: Open Source in-Situ Layer-wise 3D Printing
Image Anomaly Detection Using Histograms of Oriented Gradients and a
Physics-Based Rendering Engine [0.0]
本研究では,物理レンダリングエンジンであるBlenderで生成した理想的なプロセスのG符号による参照画像と静止単眼カメラからのプリント層画像を比較し,3次元印刷異常を検出するオープンソース手法を提案する。
局所画像領域の向き勾配(HOG)のヒストグラムの類似性を解析することにより,視覚偏差の認識を実現した。
本手法の実装は, 予備データを必要としないため, 部品の大量生産において, 同一形状の添加物あるいは減算的製造を行うことで, 最大効率を実現することができる。
論文 参考訳(メタデータ) (2021-11-04T09:27:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。