論文の概要: An unsupervised approach towards promptable defect segmentation in laser-based additive manufacturing by Segment Anything
- arxiv url: http://arxiv.org/abs/2312.04063v3
- Date: Wed, 26 Jun 2024 15:41:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 19:24:20.701962
- Title: An unsupervised approach towards promptable defect segmentation in laser-based additive manufacturing by Segment Anything
- Title(参考訳): Segment Anything によるレーザー添加物製造における高速欠陥セグメント化への教師なしアプローチ
- Authors: Israt Zarin Era, Imtiaz Ahmed, Zhichao Liu, Srinjoy Das,
- Abstract要約: 我々は、最先端のビジョントランスフォーマー(ViT)ベースのファンデーションモデルを用いて、画像セグメンテーションのためのフレームワークを構築する。
我々は、ラベル付きデータを使わずに高精度に学習し、迅速なチューニングプロセスを導出する。
我々は、現在のレーザー添加物製造プロセスに革命をもたらす可能性のある、リアルタイムな異常検出パイプラインの構築を構想する。
- 参考スコア(独自算出の注目度): 7.188573079798082
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Foundation models are currently driving a paradigm shift in computer vision tasks for various fields including biology, astronomy, and robotics among others, leveraging user-generated prompts to enhance their performance. In the Laser Additive Manufacturing (LAM) domain, accurate image-based defect segmentation is imperative to ensure product quality and facilitate real-time process control. However, such tasks are often characterized by multiple challenges including the absence of labels and the requirement for low latency inference among others. Porosity is a very common defect in LAM due to lack of fusion, entrapped gas, and keyholes, directly affecting mechanical properties like tensile strength, stiffness, and hardness, thereby compromising the quality of the final product. To address these issues, we construct a framework for image segmentation using a state-of-the-art Vision Transformer (ViT) based Foundation model (Segment Anything Model) with a novel multi-point prompt generation scheme using unsupervised clustering. Utilizing our framework we perform porosity segmentation in a case study of laser-based powder bed fusion (L-PBF) and obtain high accuracy without using any labeled data to guide the prompt tuning process. By capitalizing on lightweight foundation model inference combined with unsupervised prompt generation, we envision constructing a real-time anomaly detection pipeline that could revolutionize current laser additive manufacturing processes, thereby facilitating the shift towards Industry 4.0 and promoting defect-free production along with operational efficiency.
- Abstract(参考訳): ファンデーションモデルは、現在、生物学、天文学、ロボット工学など様々な分野におけるコンピュータビジョンタスクのパラダイムシフトを推進しており、ユーザー生成プロンプトを活用してパフォーマンスを向上させる。
Laser Additive Manufacturing (LAM) ドメインでは、正確な画像ベースの欠陥セグメンテーションが製品の品質を保証し、リアルタイムプロセス制御を容易にするために不可欠である。
しかしながら、ラベルの欠如や低レイテンシ推論の要件など、複数の課題が特徴的であることが多い。
ポーシティは、核融合、密閉ガス、キーホールの欠如により、LAMの非常に一般的な欠陥であり、引張強度、硬さ、硬さなどの機械的特性に直接影響を与え、最終生成物の品質を損なう。
これらの問題に対処するために, 最先端のビジョントランスフォーマー(ViT)ベースのファンデーションモデル(セグメンション・アロシング・モデル)を用いて, 教師なしクラスタリングを用いた新しいマルチポイントプロンプト生成方式を用いて, 画像セグメンテーションのためのフレームワークを構築した。
本フレームワークを用いて,レーザーを用いた粉体層融合(L-PBF)のケーススタディにおいて多孔性セグメンテーションを行い,ラベル付きデータを使わずに高精度に測定し,迅速なチューニングプロセスを導出する。
軽質な基礎モデル推論と教師なしの即時生成を併用することにより、現在のレーザー添加物製造プロセスに革命をもたらすようなリアルタイムな異常検出パイプラインの構築を構想し、産業4.0への移行を容易にし、運転効率とともに欠陥のない生産を促進する。
関連論文リスト
- Component-aware Unsupervised Logical Anomaly Generation for Industrial Anomaly Detection [31.27483219228598]
異常検出は、製品の品質を確保し、自動化プロセスの効率を向上させるために、工業生産において重要である。
最近の生成モデルは、しばしば偽陽性を増大させる非現実的な異常を発生させるか、訓練のために現実世界の異常サンプルを必要とする。
本稿では,論理的異常生成のギャップに対処するコンポーネント・アウェアで教師なしのフレームワークであるComGENを提案する。
論文 参考訳(メタデータ) (2025-02-17T11:54:43Z) - Mask Factory: Towards High-quality Synthetic Data Generation for Dichotomous Image Segmentation [70.95380821618711]
Dichotomous Image (DIS) タスクは高度に正確なアノテーションを必要とする。
現在の生成モデルとテクニックは、シーンのずれ、ノイズによるエラー、限られたトレーニングサンプルの変動といった問題に苦慮している。
多様な正確なデータセットを生成するためのスケーラブルなソリューションを提供する。
論文 参考訳(メタデータ) (2024-12-26T06:37:25Z) - Code-as-Monitor: Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection [56.66677293607114]
オープンセットのリアクティブかつアクティブな障害検出のためのCode-as-Monitor(CaM)を提案する。
モニタリングの精度と効率を高めるために,制約関連エンティティを抽象化する制約要素を導入する。
実験により、CaMは28.7%高い成功率を達成し、厳しい乱れの下で実行時間を31.8%短縮することが示された。
論文 参考訳(メタデータ) (2024-12-05T18:58:27Z) - Scalable AI Framework for Defect Detection in Metal Additive Manufacturing [2.303463009749888]
我々は、畳み込みニューラルネットワーク(CNN)を利用してプリント層の熱画像を分析し、これらの特性に影響を与える異常を自動的に識別する。
我々はこれらのモデルをCLoud ADditive Manufacturing (CLADMA)モジュールに統合し、AMアプリケーションのアクセシビリティと実用性を向上させる。
論文 参考訳(メタデータ) (2024-11-01T18:17:59Z) - LLM-3D Print: Large Language Models To Monitor and Control 3D Printing [6.349503549199403]
産業4.0は、デジタル化を推進し、添加性製造(AM)へのパラダイムシフトによって製造に革命をもたらした。
重要なAM技術であるFDMは、層間押出による最小限の材料廃棄物による、高度にカスタマイズされたコスト効率の高い製品の作成を可能にする。
本稿では,3Dプリンタとともに学習済みのLarge Language Models(LLM)を利用して,印刷欠陥の検出と対処を行うプロセス監視・制御フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-26T14:38:19Z) - DeepInspect: An AI-Powered Defect Detection for Manufacturing Industries [0.0]
この技術は、製品写真から複雑な詳細を抽出することによって、欠陥を正確に識別する。
このプロジェクトでは、ディープラーニングフレームワークを活用して、製造プロセスにおけるリアルタイムな欠陥検出を自動化する。
論文 参考訳(メタデータ) (2023-11-07T04:59:43Z) - CINFormer: Transformer network with multi-stage CNN feature injection
for surface defect segmentation [73.02218479926469]
表面欠陥分割のための多段CNN特徴注入を用いた変圧器ネットワークを提案する。
CINFormerは、入力画像のマルチレベルCNN機能をエンコーダ内のトランスフォーマーネットワークの異なるステージに注入する、シンプルだが効果的な機能統合機構を提供する。
さらに、CINFormerはTop-Kセルフアテンションモジュールを提供し、欠陥に関するより重要な情報を持つトークンにフォーカスする。
論文 参考訳(メタデータ) (2023-09-22T06:12:02Z) - Autoencoder-Based Visual Anomaly Localization for Manufacturing Quality
Control [0.0]
本稿では,教師なしクラス選択による欠陥ローカライズオートエンコーダを提案する。
選択された欠陥のクラスは、人工的な欠陥をシミュレートするために天然の野生のテクスチャで強化される。
提案手法は, 家具用メラミン面板における品質欠陥の高精度かつ高精度な位置決めを行うことで, 有望な結果を示すものである。
論文 参考訳(メタデータ) (2023-09-13T11:18:15Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - TinyDefectNet: Highly Compact Deep Neural Network Architecture for
High-Throughput Manufacturing Visual Quality Inspection [72.88856890443851]
TinyDefectNetは、高スループット製造の視覚品質検査に適した、非常にコンパクトな深層畳み込みネットワークアーキテクチャである。
TinyDefectNetはAMD EPYC 7R32上にデプロイされ、ネイティブフロー環境を使って7.6倍のスループット、AMD ZenDNNアクセラレーターライブラリを使って9倍のスループットを達成した。
論文 参考訳(メタデータ) (2021-11-29T04:19:28Z) - Cognitive Visual Inspection Service for LCD Manufacturing Industry [80.63336968475889]
本論文では,現在FPD業界で主流となっている液晶ディスプレイ(LCD)の視覚検査システムについて述べる。
システムは、堅牢/高性能欠陥認識モデルと認知視覚検査サービスアーキテクチャの2つの基礎に基づいています。
論文 参考訳(メタデータ) (2021-01-11T08:14:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。