論文の概要: PHEVA: A Privacy-preserving Human-centric Video Anomaly Detection Dataset
- arxiv url: http://arxiv.org/abs/2408.14329v1
- Date: Mon, 26 Aug 2024 14:55:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 13:41:26.208966
- Title: PHEVA: A Privacy-preserving Human-centric Video Anomaly Detection Dataset
- Title(参考訳): PHEVA: プライバシー保護のための人間中心のビデオ異常検出データセット
- Authors: Ghazal Alinezhad Noghre, Shanle Yao, Armin Danesh Pazho, Babak Rahimi Ardabili, Vinit Katariya, Hamed Tabkhi,
- Abstract要約: PHEVAは、ピクセル情報を取り除き、識別されていない人間のアノテーションのみを提供することで、個人を識別可能な情報を保護している。
本研究は、10%エラーレート(10ER)を含む総合的なメトリクスセットを用いて、PHEVAの最先端手法をベンチマークする。
この種の最初のものとして、PHEVAは、継続学習ベンチマークを導入することで、従来のトレーニングと実世界のデプロイメントのギャップを埋めるものだ。
- 参考スコア(独自算出の注目度): 2.473948454680334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: PHEVA, a Privacy-preserving Human-centric Ethical Video Anomaly detection dataset. By removing pixel information and providing only de-identified human annotations, PHEVA safeguards personally identifiable information. The dataset includes seven indoor/outdoor scenes, featuring one novel, context-specific camera, and offers over 5x the pose-annotated frames compared to the largest previous dataset. This study benchmarks state-of-the-art methods on PHEVA using a comprehensive set of metrics, including the 10% Error Rate (10ER), a metric used for anomaly detection for the first time providing insights relevant to real-world deployment. As the first of its kind, PHEVA bridges the gap between conventional training and real-world deployment by introducing continual learning benchmarks, with models outperforming traditional methods in 82.14% of cases. The dataset is publicly available at https://github.com/TeCSAR-UNCC/PHEVA.git.
- Abstract(参考訳): PHEVA - プライバシー保護のための人間中心の倫理ビデオ異常検出データセット。
PHEVAは、画素情報を取り除き、非識別の人的アノテーションのみを提供することで、個人識別可能な情報を保護している。
データセットには7つの屋内/屋外シーンが含まれており、1つの新しいコンテキスト固有のカメラを備え、前回の最大のデータセットに比べて5倍のポーズアノテートフレームを提供する。
本研究は,PHEVAの最先端手法を,実世界の展開に関する洞察を提供するために,初めて異常検出に用いられる10%エラーレート(10ER)を含む,包括的なメトリクスセットを用いてベンチマークする。
この種の最初のものとして、PHEVAは継続学習ベンチマークを導入して、従来のトレーニングと実世界のデプロイメントのギャップを埋め、82.14%のケースで従来の手法よりも優れたモデルを提供している。
データセットはhttps://github.com/TeCSAR-UNCC/PHEVA.gitで公開されている。
関連論文リスト
- PoseBench: Benchmarking the Robustness of Pose Estimation Models under Corruptions [57.871692507044344]
ポース推定は、単眼画像を用いて人や動物の解剖学的キーポイントを正確に同定することを目的としている。
現在のモデルは一般的に、クリーンなデータに基づいてトレーニングされ、テストされる。
実世界の腐敗に対するポーズ推定モデルの堅牢性を評価するためのベンチマークであるPoseBenchを紹介する。
論文 参考訳(メタデータ) (2024-06-20T14:40:17Z) - Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
ディープジェネレータ技術は、区別がつかない高品質のフェイクビデオを制作し、深刻な社会的脅威をもたらす可能性がある。
従来の偽造検出手法は、データを直接集中的に訓練する。
本稿では,個人化表現を用いた新しいフェデレーション顔偽造検出学習を提案する。
論文 参考訳(メタデータ) (2024-06-17T02:20:30Z) - BaboonLand Dataset: Tracking Primates in the Wild and Automating Behaviour Recognition from Drone Videos [0.8074955699721389]
本研究では,バブーン検出,追跡,行動認識のための,ドローンビデオからの新たなデータセットを提案する。
Baboon検出データセットは、ドローンビデオにすべてのbaboonをバウンディングボックスで手動でアノテートすることで作成されている。
行動認識データセットは、各動物を中心としたビデオサブリージョンであるミニシーンにトラックを変換することで生成される。
論文 参考訳(メタデータ) (2024-05-27T23:09:37Z) - Learning Human Action Recognition Representations Without Real Humans [66.61527869763819]
そこで本研究では,仮想人間を含む合成データを用いて,実世界の映像を活用してモデルを事前学習するベンチマークを提案する。
次に、このデータに基づいて学習した表現を、下流行動認識ベンチマークの様々なセットに転送可能であるかを評価する。
私たちのアプローチは、以前のベースラインを最大5%上回ります。
論文 参考訳(メタデータ) (2023-11-10T18:38:14Z) - EGOFALLS: A visual-audio dataset and benchmark for fall detection using
egocentric cameras [0.16317061277456998]
転倒は重大であり、高齢者のような脆弱な人口にとって致命的である。
これまでの研究は、単一のセンサー、画像、加速度計によるデータキャプチャによるフォールの検出に対処してきた。
本研究では,エゴセントリックカメラが撮影したビデオから抽出したマルチモーダルディスクリプタを利用する。
論文 参考訳(メタデータ) (2023-09-08T20:14:25Z) - Vision-based Behavioral Recognition of Novelty Preference in Pigs [1.837722971703011]
研究データの行動スコアリングは、ドメイン固有のメトリクスを抽出するために重要であるが、人間の労働力を用いて膨大な量の情報を分析する能力にボトルネックがある。
ディープラーニングは、このボトルネックを緩和するための重要な進歩として広く見なされている。
我々は,手動スコアリングのプロセスを緩和するために,ディープラーニングを活用できる分野を1つ同定する。
論文 参考訳(メタデータ) (2021-06-23T06:10:34Z) - Towards Accurate Human Pose Estimation in Videos of Crowded Scenes [134.60638597115872]
我々は、時間的文脈を利用して新しいデータを収集する視点から、混雑したシーンのビデオにおける人間のポーズ推定を改善することに注力する。
あるフレームについては、過去のフレームから過去のポーズを転送し、その後のフレームから現在のフレームへ未来的なポーズを後退させ、ビデオにおける安定した人間のポーズ推定に繋がる。
このようにして、HIEチャレンジのテストデータセット上で、13本中7本、56.33本の平均w_APで最高の性能を達成する。
論文 参考訳(メタデータ) (2020-10-16T13:19:11Z) - The AVA-Kinetics Localized Human Actions Video Dataset [124.41706958756049]
本稿では,AVA-Kineticsによる人行動ビデオデータセットについて述べる。
データセットは、AVAアノテーションプロトコルを使用して、Kinetics-700データセットのビデオをアノテートすることで収集される。
データセットには、キーフレーム内の各人間のための80のAVAアクションクラスに注釈付けされた230万以上のクリップが含まれている。
論文 参考訳(メタデータ) (2020-05-01T04:17:14Z) - DeeperForensics-1.0: A Large-Scale Dataset for Real-World Face Forgery
Detection [93.24684159708114]
DeeperForensics-1.0は、これまでで最大の顔偽造検出データセットであり、合計で1760万フレームの6万本のビデオで構成されている。
生成されたビデオの品質は、既存のデータセットよりも優れており、ユーザ研究によって検証されている。
このベンチマークには隠れたテストセットがあり、人間の評価において高い認識スコアを達成する操作されたビデオを含んでいる。
論文 参考訳(メタデータ) (2020-01-09T14:37:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。