論文の概要: Assessing Contamination in Large Language Models: Introducing the LogProber method
- arxiv url: http://arxiv.org/abs/2408.14352v1
- Date: Mon, 26 Aug 2024 15:29:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 13:31:39.246222
- Title: Assessing Contamination in Large Language Models: Introducing the LogProber method
- Title(参考訳): 大規模言語モデルにおける汚染評価:LogProber法の導入
- Authors: Nicolas Yax, Pierre-Yves Oudeyer, Stefano Palminteri,
- Abstract要約: 機械学習において、汚染とは、データテストがトレーニングセットにリークする状況を指す。
本稿では,与えられた文中のトークン確率を用いて汚染を検出するアルゴリズムであるLogProberを紹介する。
- 参考スコア(独自算出の注目度): 17.91379291654773
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In machine learning, contamination refers to situations where testing data leak into the training set. The issue is particularly relevant for the evaluation of the performance of Large Language Models (LLMs), which are generally trained on gargantuan, and generally opaque, corpora of text scraped from the world wide web. Developing tools to detect contamination is therefore crucial to be able to fairly and properly track the evolution of the performance of LLMs. Most recent works in the field are not tailored to quantify contamination on short sequences of text like we find in psychology questionnaires. In the present paper we introduce LogProber, a novel, efficient, algorithm that we show able to detect contamination using token probability in given sentences. In the second part we investigate the limitations of the method and discuss how different training methods can contaminate models without leaving traces in the token probabilities.
- Abstract(参考訳): 機械学習において、汚染とは、データテストがトレーニングセットにリークする状況を指す。
この問題は、大言語モデル(LLM)の性能評価に特に関係しており、一般的にはガーガントゥアンで訓練され、一般にはワールドワイドウェブから取り除かれた不透明でコーパスのコーパスである。
したがって, 汚染検出ツールの開発は, LLMの性能の進化を適切に, 適切に追跡することが重要である。
この分野での最近の研究は、心理学のアンケートで見られるような短いテキスト列の汚染の定量化には適していない。
本稿では,与えられた文中のトークン確率を用いて汚染を検出するアルゴリズムであるLogProberを紹介する。
第2部では,提案手法の限界について検討し,トークン確率の痕跡を残さずに,異なるトレーニング手法がモデルを汚染する方法について考察する。
関連論文リスト
- Pretraining Data Detection for Large Language Models: A Divergence-based Calibration Method [108.56493934296687]
本研究では,乱数から発散する概念に触発された偏差に基づくキャリブレーション手法を導入し,プリトレーニングデータ検出のためのトークン確率のキャリブレーションを行う。
我々は,中国語テキスト上でのLLMの検出手法の性能を評価するために,中国語のベンチマークであるPatentMIAを開発した。
論文 参考訳(メタデータ) (2024-09-23T07:55:35Z) - Adaptive Pre-training Data Detection for Large Language Models via Surprising Tokens [1.2549198550400134]
大きな言語モデル(LLM)は広く使われているが、プライバシー、セキュリティ、著作権については不透明なトレーニングデータのために懸念されている。
この問題に対する現在の解決策は、メンバーシップ推論攻撃(MIA)のような機械学習プライバシで探索されたテクニックを活用する。
本稿では、この信頼性を軽減し、同定を効果的に増幅する適応型事前学習データ検出法を提案する。
論文 参考訳(メタデータ) (2024-07-30T23:43:59Z) - Data Contamination Can Cross Language Barriers [29.103517721155487]
大規模言語モデル(LLM)の開発における不透明さは、事前学習データにおける公開ベンチマークの汚染の可能性への懸念が高まっている。
まず, 電流検出手法を回避しつつ, LLMの性能を増大させる多言語性汚染について述べる。
本稿では,このような汚染を深く隠蔽する一般化に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-06-19T05:53:27Z) - Language Rectified Flow: Advancing Diffusion Language Generation with Probabilistic Flows [53.31856123113228]
本稿では,言語認識フロー (ours) を提案する。
本手法は, 標準確率流モデルの再構成に基づく。
実験およびアブレーション実験により,本手法は多くのNLPタスクに対して汎用的,効果的,有益であることが示されている。
論文 参考訳(メタデータ) (2024-03-25T17:58:22Z) - Fact-Checking the Output of Large Language Models via Token-Level Uncertainty Quantification [116.77055746066375]
大型言語モデル(LLM)は幻覚、すなわちその出力に誤った主張を生じさせることで有名である。
本稿では,トークンレベルの不確実性定量化に基づくファクトチェックと幻覚検出パイプラインを提案する。
論文 参考訳(メタデータ) (2024-03-07T17:44:17Z) - Investigating Data Contamination for Pre-training Language Models [46.335755305642564]
我々は,一連のGPT-2モデルを事前学習することで,事前学習段階におけるデータ汚染の影響について検討する。
評価データから,テキスト汚染 (テキスト, 評価サンプルの入力テキスト) と接地トラス汚染 (テキスト, 入力に要求されるプロンプトと所望の出力) の両方の効果を強調した。
論文 参考訳(メタデータ) (2024-01-11T17:24:49Z) - Understanding and Mitigating Classification Errors Through Interpretable
Token Patterns [58.91023283103762]
容易に解釈可能な用語でエラーを特徴付けることは、分類器が体系的なエラーを起こす傾向にあるかどうかを洞察する。
正しい予測と誤予測を区別するトークンのパターンを発見することを提案する。
提案手法であるPremiseが実際によく動作することを示す。
論文 参考訳(メタデータ) (2023-11-18T00:24:26Z) - Detecting Pretraining Data from Large Language Models [90.12037980837738]
事前学習データ検出問題について検討する。
事前学習データを知ることなく、テキスト片とLCMへのブラックボックスアクセスを条件に、モデルが提供されたテキストでトレーニングされたかどうかを判断できますか?
簡単な仮説に基づく新しい検出手法Min-K% Probを提案する。
論文 参考訳(メタデータ) (2023-10-25T17:21:23Z) - Sample Efficient Approaches for Idiomaticity Detection [6.481818246474555]
本研究は, 慣用性検出の効率的な手法を探索する。
特に,いくつかの分類法であるPET(Pattern Exploit Training)と,文脈埋め込みの効率的な方法であるBERTRAM(BERTRAM)の影響について検討した。
実験の結果,PETは英語のパフォーマンスを向上するが,ポルトガル語やガリシア語では効果が低下し,バニラmBERTと同程度の総合的な性能が得られた。
論文 参考訳(メタデータ) (2022-05-23T13:46:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。